973 resultados para Zeeman splitting
Resumo:
Spin splitting of the AlyGa1-yAs/GaAs/AlxGa1-xAs/AlyGa1-yAs (x not equal y) step quantum wells (QWs) has been theoretically investigated with a model that includes both the interface and the external electric field contribution. The overall spin splitting is mainly determined by the interface contribution, which can be well manipulated by the external electric field. In the absence of the electric field, the Rashba effect exists due to the internal structure inversion asymmetry (SIA). The electric field can strengthen or suppress the internal SIA, resulting in an increase or decrease of the spin splitting. The step QW, which results in large spin splitting, has advantages in applications to spintronic devices compared with symmetrical and asymmetrical QWs. Due to the special structure design, the spin splitting does not change with the external electric field.
Resumo:
We have studied the exciton spin dynamics in single InAs quantum dots (QDs) with different exciton fine structural splitting (FSS) by transient luminescence measurements. We have established the correlation between exciton spin relaxation rate and the energy splitting of the FSS when FSS is nonzero and found that the spin relaxation rate in QD increases with a slope of 8.8x10(-4) ns(-1) mu eV(-1). Theoretical analyses based on the phonon-assisted relaxations via the deformation potential give a reasonable interpretation of the experimental results.
Resumo:
By means of the transfer matrix technique, interface-induced Rashba spin splitting of conduction subbands in Al0.3Ga0.7As/GaAs/AlxGa1-xAs/Al0.3Ga0.7As step quantum wells which contain internal structure inversion asymmetry introduced by the insertion of AlxGa1-xAs step potential is investigated theoretically in the absence of electric field and magnetic field. The dependence of spin splitting on the well width, step width and Al concentration is investigated in detail. We find that the sign of the first excited subband spin splitting changes with well width and step width, and is opposite to that of the ground subband under certain conditions. The sign and strength of the spin splitting are shown to be sensitive to the components of the envelope function at three interfaces. Copyright (C) EPLA, 2009
Resumo:
By the method of finite difference, the anisotropic spin splitting of the AlxGa1-xAs/GaAs/AlyGa1-yAs/AlxGa1-xAs step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field. We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field. The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin. The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.
Resumo:
Directional coupler can be constructed by putting multiple photonic crystal waveguides together. The propagation of the optical field entering this system symmetrically was analysed numerically according to self-imaging principle. On the basis of this structure, ultracompact multiway beam splitter was designed and the ones with three and four output channels were discussed in details as examples. By simply tuning the effective refractive index of two dielectric rods in the coupler symmetrically to induce the redistribution of the power of the optical field, uniform or free splitting can be achieved. Compared with the reported results, this way is simpler, more feasible and more efficient and has extensive practical value in future photonic integrated circuits.
Resumo:
In the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling, the binding energy E-b and spin-orbit split energy Gamma of the ground state of a hydrogenic donor impurity in AlGaN/GaN triangle-shaped potential heterointerface are calculated. We find that with the electric field of the heterojunction increasing, (1) the effective width of quantum well (W) over bar decreases and (2) the binding energy increases monotonously, and in the mean time, (3) the spin-orbit split energy Gamma decreases drastically. (4) The maximum of Gamma is 1.22 meV when the electric field of heterointerface is 1 MV/cm.
Resumo:
We have investigated the conductance of a quantum dot system suffering an anti-symmetric ac gate voltage which induces the transition between dot levels in the linear regime at zero temperature in the rotating wave approximation. Interesting Fano resonances appear on one side of the displaced resonant tunnelling peaks for the nonresonant case or the peak splitting for the resonant case. The line shape of conductance (vs Fermi energy) near each level of the quantum dot can be decomposed into two profiles: a Breit-Wigner peak and a Fano profile, or a Breit-Wigner peak and a dip in both cases.
Resumo:
The electronic structure, spin splitting energies, and g factors of paramagnetic In1-xMnxAs nanowires under magnetic and electric fields are investigated theoretically including the sp-d exchange interaction between the carriers and the magnetic ion. We find that the effective g factor changes dramatically with the magnetic field. The spin splitting due to the sp-d exchange interaction counteracts the Zeeman spin splitting. The effective g factor can be tuned to zero by the external magnetic field. There is also spin splitting under an electric field due to the Rashba spin-orbit coupling which is a relativistic effect. The spin-degenerated bands split at nonzero k(z) (k(z) is the wave vector in the wire direction), and the spin-splitting bands cross at k(z) = 0, whose k(z)-positive part and negative part are symmetrical. A proper magnetic field makes the k(z)-positive part and negative part of the bands asymmetrical, and the bands cross at nonzero k(z). In the absence of magnetic field, the electron Rashba coefficient increases almost linearly with the electric field, while the hole Rashba coefficient increases at first and then decreases as the electric field increases. The hole Rashba coefficient can be tuned to zero by the electric field.
Resumo:
Based on the effective-mass model and the mean-field approximation, we investigate the energy levels of the electron and hole states of the Mn-doped ZnO quantum wires (x=0.0018) in the presence of the external magnetic field. It is found that either twofold degenerated electron or fourfold degenerated hole states split in the field. The splitting energy is about 100 times larger than those of undoped cases. There is a dark exciton effect when the radius R is smaller than 16.6 nm, and it is independent of the effective doped Mn concentration. The lowest state transitions split into six Zeeman components in the magnetic field, four sigma(+/-) and two pi polarized Zeeman components, their splittings depend on the Mn-doped concentration, and the order of pi and sigma(+/-) polarized Zeeman components is reversed for thin quantum wires (R < 2.3 nm) due to the quantum confinement effect.
Resumo:
Unique spin splitting behaviors in ultrathin InAs layers, which show very different spin splitting characteristics between the InAs monolayer (ML) and submonolayer (SML) have been observed. While distinct spin splitting is observed in an InAs ML, no visible spin splitting is found in a 1/3 ML InAs SML. In addition, the spin relaxation time in the 1/3 ML InAs is found to be much longer than that in the 1 ML sample. These results are in good agreement with the theoretical prediction that the interexcitonic exchange interaction plays a dominant role in energy splitting, while the intraexciton exchange interaction controls the spin relaxation. (c) 2007 American Institute of Physics.
Resumo:
We study theoretically the charge-density and spin-density excitations in a two-dimensional electron gas in the presence of a perpendicular magnetic field and a Rashba type spin-orbit coupling. The dispersion and the corresponding intensity of excitations in the vicinity of cyclotron resonance frequency are calculated within the framework of random phase approximation. The dependence of excitation dispersion on various system parameters, i.e., the Rashba spin-orbit interaction strength, the electron density, the Zeeman spin splitting, and the Coulomb interaction strength is investigated.
Resumo:
Rashba spin splitting (RSS) in biased semiconductor quantum wells is investigated theoretically based on eight-band k center dot p theory. We find that at large wave vectors, RSS is both nonmonotonic and anisotropic as a function of in-plane wave vector, in contrast to the widely used isotropic linear model. We derive an analytical expression for RSS, which can qualitatively reproduce such nonmonotonic behavior at large wave vectors. We also investigate numerically the dependence of RSS on the various band parameters and find that RSS increases with decreasing band gap and subband index, increasing valence band offset, external electric field, and well width. All these dependences can be qualitatively described by our analytical model.
Resumo:
Using the multiband quantum transmitting boundary method (MQTBM), hole resonant tunneling through AlGaAs/GaMnAs junctions is investigated theoretically. Because of band-edge splitting in the DMS layer, the current for holes with different spins are tuned in resonance at different biases. The bound levels of the "light" hole in the quantum well region turned out to be dominant in the tunneling channel for both "heavy" and "light" holes. The resonant tunneling structure can be used as a spin filter for holes for adjusting the Fermi energy and the thickness of the junctions.
Resumo:
A microcavity structure, containing self-assembled InGaAs quantum dots, is studied by angle-resolved photoluminescence (PL) spectroscopy. A doublet with the splitting energy of 0.5-1.5 nm appears when the detection angle is larger than 35degrees. This doublet is identified as mode splitting (not the Rabi splitting) by polarization measurements. We find that it is the considerable deviation of the cavity-mode frequency from the central frequency of the stop band that makes the TE and TM cavity modes split more discernibly. The inhomogeneous broadening of quantum dots gives the TE and TM cavity modes a chance to show up simultaneously in the PL spectra. (C) 2003 American Institute of Physics.
Resumo:
Shubnikov-de Haas measurements were carried out for In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structures grown on GaAs substrates with different indium contents and/or different Si delta-doping concentrations. Zero-field (B-->0) spin splitting was found in samples with stronger conduction band bending in the InGaAs well. It was shown that the dominant spin splitting mechanism is attributed to the contribution by the Rashba term. We found that zero-field spin splitting not only occurs in the ground electron subband, but also in the first excited electron subband for a sample with Si delta-doping concentration of 6x10(12) cm(-2). We propose that this In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structure grown on GaAs may be a promising candidate spin-polarized field-effect transistors. (C) 2002 American Institute of Physics.