993 resultados para ZNO FILMS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Interaction of CH3OH with Cu clusters deposited on ZnO films grown on a Zn foil as well as on a ZnO(0001)Zn crystal, has been examined by X-ray photoelectron spectroscopy. On clean Cu clusters, reversible molecular adsorption or formation of CH3O is observed. However if the Cu clusters are pretreated with oxygen, both CH3O and HCOO- species are produced. Model Cu/ZnO catalyst surfaces, containing both Cu1+ and Cu-0 species, show interesting oxidation properties. On a Cu-0-rich catalyst surface, only CH3O species is formed on interaction with CH3OH. On a Cu1+-rich surface, however, HCOO- ion is the predominant species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pure and tin doped zinc oxide (Sn:ZnO) thin films were prepared for the first time by NSP technique using aqueous solutions of zinc acetate dehydrate, tin (IV) chloride fendahydrate and methanol. X-ray diffraction patterns confirm that the films are polycrystalline in nature exhibiting hexagonal wurtzite type, with (0 0 2) as preferred orientation. The structural parameters such as lattice constant ('a' and `c'), crystallite size, dislocation density, micro strain, stress and texture coefficient were calculated from X-ray diffraction studies. Surface morphology was found to be modified with increasing Sn doping concentration. The ZnO films have high transmittance 85% in the visible region, and the transmittance is found to be decreased with the increase of Sn doping concentration. The corresponding optical band gap decreases from 3.25 to 3.08 eV. Room temperature photoluminescence reveals the sharp emission of strong UV peak at 400 nm (3.10 eV) and a strong sharp green luminescence at 528 nm (2.34 eV) in the Sn doped ZnO films. The electrical resistivity is found to be 10(6) Omega-cm at higher temperature and 10(5) Omega-cm at lower temperature. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nanostructured GdxZn1-xO thin films with different Gd concentration from 0% to 10% deposited at 400 degrees C using the NSF technique. The films were characterized by structural, surface and optical properties, respectively. X-ray diffraction analysis shows that the Gd doped ZnO films have lattice parameters a = 3.2497 angstrom and c = 5.2018 angstrom with hexagonal structure and preferential orientation along (002) plane. The estimated values compare well with the standard values. When film thickness increases from 222 to 240 nm a high visible region transmittance (>70%) is observed. The optical band gap energy, optical constants (n and k), complex dielectric constants (epsilon(r), and epsilon(i)) and optical conductivities (sigma(r), and sigma(i)) were calculated from optical transmittance data. The optical band gap energy is 3.2 eV for pure ZnO film and 3.6 eV for Gd0.1Zn0.9-O film. The PL studies confirm the presence of a strong UV emission peak at 399 nm. Besides, the UV emission of ZnO films decreases with the increase of Gd doping concentration correspondingly the ultra-violet emission is replaced by blue and green emissions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sodium doped zinc oxide (Na:ZnO) thin films were deposited on glass substrates at substrate temperatures 300,400 and 500 degrees C by a novel nebulizer spray method. X-ray diffraction shows that all the films are polycrystalline in nature having hexagonal structure with high preferential orientation along (0 0 2) plane. High resolution SEM studies reveal the formation of Na-doped ZnO films having uniformly distributed nano-rods over the entire surface of the substrates at 400 degrees C. The complex impedance of the ZnO nano-rods shows two distinguished semicircles and the diameter of the arcs got decreased in diameter as the temperature increases from 170 to 270 degrees C and thereafter slightly increased. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two different soft-chemical, self-assembly-based solution approaches are employed to grow zinc oxide (ZnO) nanorods with controlled texture. The methods used involve seeding and growth on a substrate. Nanorods with various aspect ratios (1-5) and diameters (15-65 nm) are grown. Obtaining highly oriented rods is determined by the way the substrate is mounted within the chemical bath. Furthermore, a preheat and centrifugation step is essential for the optimization of the growth solution. In the best samples, we obtain ZnO nanorods that are almost entirely oriented in the (002) direction; this is desirable since electron mobility of ZnO is highest along this crystallographic axis. When used as the buffer layer of inverted organic photovoltaics (I-OPVs), these one-dimensional (1D) nanostructures offer: (a) direct paths for charge transport and (b) high interfacial area for electron collection. The morphological, structural, and optical properties of ZnO nanorods are studied using scanning electron microscopy, X-ray diffraction, and ultraviolet-visible light (UV-vis) absorption spectroscopy. Furthermore, the surface chemical features of ZnO films are studied using X-ray photoelectron spectroscopy and contact angle measurements. Using as-grown ZnO, inverted OPVs are fabricated and characterized. For improving device performance, the ZnO nanorods are subjected to UV-ozone irradiation. UV-ozone treated ZnO nanorods show: (i) improvement in optical transmission, (ii) increased wetting of active organic components, and (iii) increased concentration of Zn-O surface bonds. These observations correlate well with improved device performance. The devices fabricated using these optimized buffer layers have an efficiency of similar to 3.2% and a fill factor of 0.50; this is comparable to the best I-OPVs reported that use a P3HT-PCBM active layer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, a micro-pump unit based on surface acoustic wave (SAW) on piezoelectric ZnO film is designed and fabricated as a micro-fluidic device. It employs a mechanical wave, which is generated electrically using an aluminum interdigital transducer (IDT), and propagates on the surface of the ZnO film. The ZnO film was used in this study because it has a high electromechanical coefficient and an excellent bonding with various substrate materials, in particular silicon. The sputtering parameters for ZnO film deposition have been optimized, and the ZnO films with different thickness from 1 micron to 5.5 microns were prepared. The film properties have been characterized using different methods, such as scanning electron microscopy, X-ray diffraction and atomic force microscopy. Aluminum IDT with a finger width and spacing of 8 microns was patterned on the ZnO film using a lift-off process. The frequency generated was measured using a network analyzer, and it varies from 130 MHz to 180 MHz as a function of film thickness. A signal generator was used to generate the frequency with a power amplifier to amplify the signal, which was then applied to aluminum IDT to generate the surface acoustic wave. If a liquid droplet exists on the surface carrying the acoustic wave, the energy and the momentum of the SAW will be coupled into the fluid, causing the liquid to vibrate and move on film surface. The strength of this movement is determined by the applied voltage and frequency. The volume of the liquid drop loaded on the SAW device in this study is of several hundreds of nanoliters. The movement of the liquid inside the droplet and also on the ZnO film surface can be demonstrated. The performance of ZnO SAW device was characterized as a function of film thickness. © 2007 IOP Publishing Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The macrostructure can be changed by changing the morphology of its units. In this article, we use a colloidal template route, combined with hydrothermal growth method, to get the hexagonally arrayed ZnO nanorods on the polycrystalline ZnO substrate. More significantly, through controlling the morphology of ZnO crystals by adding structure-directing agent in the precursor solution, the highly ordered porous ZnO films were obtained instead of ZnO nanorods. This templated solvent-thermal method has great potential in micro/nano-fabrication. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cobalt-doped ZnO (Zn1-xCoxO) thin films were fabricated by reactive magnetron cosputtering. The processing conditions were carefully designed to avoid the occurrence of Co precipitations. The films are c-axis oriented, and the solubility limit of Co in ZnO is less than 17%, determined by x-ray diffraction. X-ray photoemission spectroscopy measurements show Co ions have a chemical valance of 2+. In this paper, hysteresis loops were clearly observed for Zn1-xCoxO films at room temperature. The coercive field, as well as saturation magnetization per Co atom, decreases with increasing Co content, within the range of 0.07films are nonconductive as x is no more than 17%. Our results clearly demonstrate that ferromagnetism can be realized in Zn1-xCoxO without carrier incorporation. (C) 2004 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

在由溶胶-凝胶法制备的纳米ZnO薄膜衬底上,以Zn(NO_3)_2·6H_2O和六亚甲基四胺(HMT)等摩尔浓度配制成前驱体溶液,在单层聚苯乙烯(PS)微球模板辅助下,采用水热法制备了具有规则多孔结构的ZnO薄膜.探讨了PS微球作为模板对ZnO纳米棒生长的限制作用以及柠檬酸钠在水热制备方法中对晶体生长的影响.利用扫描电子显微镜(SEM)和X射线衍射(XRD)表征了水热反应后所得二维有序ZnO膜表面形貌和取向性,测量了ZnO薄膜的光致发光(PL)光谱并研究其相应机理.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Zinc oxide (ZnO) thin films were grown on the beta-Ga2O3 (100) substrate by pulsed laser deposition (PLD). X-ray diffraction (XRD) indicated that the ZnO films are c-axis oriented. The optical and electrical properties of the films were investigated. The room temperature Photoluminescence (PL) spectrum showed a near band emission at 3.28 eV with two deep level emissions. Optical absorption indicated a visible exciton absorption at room temperature. The as-grown films had good electrical properties with the resistivities as low as 0.02 Omega cm at room temperature. Thus, beta-Ga2O3 (100) substrate is shown to be a suitable substrate for fabricating ZnO film. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Optical properties were investigated of ZnO thin films grown oil (100) gamma-LiAlO2 (LAO) substrates by pulsed laser deposition method. C-axis oriented ZnO film was grown oil (100) LAO substrate at the substrate temperature of 550 degrees C. The transmittances of the films were over 85%. Peaks attributed to excitons were seen in the absorption spectra, indicating that the thin films have high crystallinity. Photoluminescence spectra were observed at room temperature; the peak at 550 urn is ascribed to oxygen vacancies in the ZnO films caused by the diffusion of Li from the substrate into the film during deposition. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

在预先镀有ZnO纳米层的(0001)蓝宝石衬底上利用低温水热法制备出ZnO薄膜。SEM和XRD显示此ZnO膜是由六棱柱状阵列构成的,基于蓝宝石衬底生长,具有高度的c轴择优取向,且(0004)摇摆曲线的FWHM达到1.8°。并发现了在水热溶液中加入一定量六次甲基四胺可以调节六棱柱状ZnO尺寸比例。

Relevância:

70.00% 70.00%

Publicador:

Resumo:

采用一种设备简单、原料低廉的新型方法,在镀有ZnO先驱薄膜的(0001)蓝宝石上利用水热法制备出了柱状ZnO阵列薄膜.用扫描电镜(SEM),X射线衍射(XRD)对样品的形貌和结构进行了表征,结果显示ZnO薄膜为柱状阵列,基于蓝宝石衬底沿c轴择优生长,且(0004)摇摆曲线半高宽度(FWHM)约为1.8°。此ZnO阵列薄膜具有很强的紫外发射光谱(PL).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

采用磁控溅射法在(111)单晶硅衬底上沉积了ZnO薄膜,并研究了退火温度对ZnO薄膜晶体质量、晶粒度大小、应力和光致发光谱的影响。X射线衍射(XRD)表明薄膜为高度c轴择优取向。不同退火温度下的ZnO薄膜应力有明显变化。应力分布最为均匀的退火温度为500℃。室温下对ZnO薄膜进行了光谱分析,可观测到明显的紫光发射(波长为380nm左右)。实验结果表明,用磁控溅射法在单晶硅衬底上能获得高质量的ZnO薄膜。

Relevância:

70.00% 70.00%

Publicador:

Resumo:

用脉冲激光沉积法在Al2O3(0001)衬底上沉积了ZnO薄膜。衬底温度分别为300℃、400℃、500℃、600℃和700℃。利用X射线衍射(XRD)和光致发光谱(PL)对薄膜的结构和光学性能进行研究。X射线衍射的结果表明在不同温度下生长的ZnO薄膜均具有高度c轴择优取向,衬底温度400℃时,膜的应力较小质量较高。ZnO薄膜有很强的紫外发光峰,紫外发光峰的强度与衬底温度密切相关,并发现当衬底温度从300℃增到400℃时,紫外发射峰出现6nm的蓝移。