966 resultados para ULTRAVIOLET-LASER EMISSION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In dieser Arbeit wird eine kontinuierliche, kohärente Strahlungsquelle bei 121,56nm, der Lyman-alpha Linie in Wasserstoff, vorgestellt. Diese Lyman-alpha Quelle soll zur zukünftigen Laserkühlung von Antiwasserstoff dienen. Die Strahlung wird durch Vier-Wellen-Mischen in Quecksilberdampf produziert. Dabei wird ein Festkörperlasersystem zur Erzeugung der Fundamentalstrahlen eingesetzt. Zur Erhöhung der nichtlinearen Suszeptibilität wird die 6^1S-7^1S Zwei-Photonen-Resonanz ausgenutzt. Zusätzlich wird mit Hilfe eines durchstimmbaren ultravioletten Lasersystems die 6^1S-6^3P Ein-Photon-Resonanz genutzt, was es erlaubt, die nichtlineare Suszeptibilität des Mischprozesses um Größenordnungen zu erhöhen. Um den Einfluss der 6^1S-6^3P Ein-Photon-Resonanz zu untersuchen, wurden zunächst die Phasenanpassungstemperaturen bei verschiedenen Verstimmungen der ultravioletten Strahlung zur 6^3P Resonanz vermessen und festgestellt, dass kleinere Verstimmungen zu niedrigeren Phasenanpassungstemperaturen führen. Es konnte sowohl theoretisch wie auch experimentell gezeigt werden, dass diese niedrigeren Phasenanpassungstemperaturen bei kleinen Verstimmungen der Erhöhung der Lyman-alpha Erzeugung durch die größere nichtlineare Suszeptibilität bei kleinen Verstimmungen entgegenwirken. Bei immer kleineren Verstimmungen zur 6^3P Resonanz limitiert die Absorption der ultravioletten Strahlung die Lyman-alpha Erzeugung. Ein positiver Effekt der niedrigeren Phasenanpassungstemperaturen ist, dass es möglich wird, auf das bisher nötige Puffergas in der Quecksilber-Dampfzelle zu verzichten, was die Lyman-alpha Erzeugung um einen Faktor 1,7 erhöht. Damit war es möglich, die bisherige Effizienz der Lyman-alpha Erzeugung zu verbessern. Es wurde eine Lyman-alpha Leistung von 0,3nW erreicht. Zusätzlich zum Einfluss der 6^3P Resonanz auf die Lyman-alpha Erzeugung wurde ein weiterer Effekt beobachtet. Durch die Nähe der 6^1S-6^3P Ein-Photon-Resonanz wird auch mehr Besetzung in das obere 7^1S Niveau der Zwei-Photonen-Resonanz gepumpt. Dadurch konnte erstmals eine kontinuierliche Lasertätigkeit auf der 6^1P-7^1S Linie in Quecksilber bei 1014nm beobachtet werden.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis cholesteric films made of liquid crystalline cellulose derivatives with improved optical properties were prepared. The choice of the solvent, hydrogen bond influencing additives, the synthetic realization of a very high degree of substitution on the cellulosic polymer and the use of mechanical stirring at the upper concentration limit of the liquid crystalline range were the basis for an improved alignment of the applied cellulose tricarbamates. In combination with a tuned substrate treatment and film preparation method, cholesteric films were obtained, with optical properties that were theoretically predicted and only known from low molecular weight liquid crystals so far. Subsequent polymerization allowed a permanent fixing of the alignment and the fabrication of free standing and insensitive films.rnThe incorporation of inorganic nanorods into the cholesteric host material was mediated with tailored block copolymers, available via controlled radical polymerization methods. In addition to the shape match between the rodlike mesogens of the host and the nanorods it was possible to increase the miscibility of both materials. Nevertheless, the size of the nanorods, in comparison to the mesogens, in these densely packed liquid crystalline phases as well as their long equilibration times were the reasons for phase separation. Nanorods are, in principle, valuable substitutes for organics, but their utilization in cellulosic CLC was not to be combined with a high quality alignment of the cholesteric structure.rnA swelling process of polymerized films in a dye solution or dissolving dyes in non-polymerized CLC was used for incorporation of the organic chromophores. With the first method the CLC could be aligned and polymerized without any disturbance due to dye molecules. The optical properties of dye and CLC were matched, with regard to mirrorless lasing devices. The dye was optically excited and laser emission supported by the cholesteric cavity was obtained. The polarization and wavelength of the emitted radiation as well as its bandwidth, the obtained interference pattern and threshold behavior of the emission proofed the feedback mechanism that was not believed to be realizable in liquid crystalline polymers. rnUtilization of a microfluidic co-flow injection device enabled us to transfer the properties of cellulosic CLC from the planar film shape to spherical micrometer sized particles. The pure material yielded particles with distorted mesogen alignment similar to films prepared by capillary flow. Dilution of the CLC with a solvent that migrated into the carrier phase during particle preparation provided the basis for particles with well ordered areas. rnAlthough cellulose derivatives were known for their liquid crystalline behavior for decades and synthesized in mass production, their application as feedback material was affected by bad optical properties. In comparison to low molar mass compounds, the low degree of order in the CLC phase was the cause. With the improved material, defined lasing emission was shown and characterized. Derivatives of cellulose are desirable materials, because, as a renewable resource, they are available in large amounts for a low price and need only simple derivatization reactions. The fabrication of CLC films with tunable lasing emission, for which this thesis can provide a starting point, is in good agreement with today's requirements of modern technology and its miniaturization.rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New photonic crystal fiber designs are presented and numerically investigated in order to improve the state of art of high power fiber lasers. The focus of this work is targeted on the region of 2 μm laser emission, which is of high interest due to its eye-safe nature and due to the large amount of applications permitted. Thulium doped fiber amplifiers are suitable for emitting in this region. Different fiber designs have been proposed, both flexible and rod-type, with the aim to enlarge mode area while maintaining robust single mode operation. The analysis of thermal effects, caused by the high thulium quantum defect, have been taken in consideration. Solutions to counteract issues derived by detrimental thermal effects have been implemented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents the potential sensing applications of fibre Bragg gratings in polymer optical fibres. Fibre Bragg gratings are fabricated in different kinds of polymer optical fibres, including Poly methyl methacrylate (PMMA) and TOPAS cyclic olefin copolymer based microstructured polymer optical fibres and PMMA based step-index photosensitive polymer optical fibre, using the 325nm continuous wave ultraviolet laser and phase mask technique. The thermal response of fabricated microstructured polymer optical fibre Bragg gratings has been characterized. The PMMA based single mode microstructured polymer optical fibre Bragg gratings exhibit negative non-linear Bragg wavelength shift with temperature, including a quasi-linear region. The thermal sensitivity of such Bragg gratings in the linear region is up to -97pm/°C. A permanent shift in the grating wavelength at room temperature is observed when such gratings are heated above a threshold temperature which can be extended by annealing the fibre before grating inscription. The largest positive Bragg wavelength shift with temperature in transmission is observed in TOPAS based few moded microstructured polymer optical fibre Bragg gratings and the measured temperature sensitivity is 250±0.5pm/°C. Gluing method is developed to maintain stable optical coupling between PMMA based single mode step index polymer optical fibre Bragg gratings and single mode step index silica optical fibre. Being benefit from this success, polymer optical fibre Bragg gratings are able to be characterised for their temperature, humidity and strain sensitivity, which are -48.2±1pm/°C, 38.3±0.5pm per %RH and 1.33±0.04 pm/µ??respectively. These sensitivities have been utilised to achieve several applications. The strain sensitivity of step index polymer optical fibre Bragg grating devices has been exploited in the potential application of the strain condition monitoring of heavy textiles and when being attached to textile specimens with certain type of adhesives. These polymer fibre Bragg grating devices show better strain transfer and lower structure reinforcement than silica optical fibre Bragg grating devices. The humidity sensitivity of step index polymer optical fibre Bragg grating devices is applied to detecting water in jet fuel and is proved to be able to measure water content of less than 20 ppm in Jet fuel. A simultaneous temperature and humidity sensor is also made by attaching a polymer fibre Bragg grating to a silica optical fibre Bragg grating and it shows better humidity measurement accuracy than that of electronic competitors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62G08, 62P30.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photonic crystal fibres (PCF) and more commonly microstructure fibres, remain interesting and novel fibre types and when suitably designed can prove to be "ideal" for sensing applications, as the different geometrical arrangement of the air holes alters their optical wave-guiding properties, whilst also providing tailored dispersion characteristics. This impacts the performance of grating structures, which offer wavelength encoded sensing information. We undertake a study on different air hole geometries and proceed with characterization of fibre Bragg and long period gratings, FBG and LPG, respectively that have been inscribed (using either a femtosecond or ultraviolet laser system) within different designs of microstructured fibre that are of interest for sensing applications. © 2012 SPIE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymer Optical Fibers have occupied historically a place for large core flexible fibers operating in short distances. In addition to their practical passive application in short-haul communication they constitute a potential research field as active devices with organic dopants. Organic dyes are preferred as dopants over organic semiconductors due to their higher optical cross section. Thus organic dyes as gain media in a polymer fiber is used to develop efficient and narrow laser sources with a tunability throughout the visible region or optical amplifier with high gain. Dyes incorporated in fiber form has added advantage over other solid state forms such as films since the pump power required to excite the molecules in the core of the fiber is less thereby utilising the pump power effectively. In 1987, Muto et.al investigated a dye doped step index polymer fiber laser. Afterwards, numerous researches have been carried out in this area demonstrating laser emission from step index, graded index and hollow optical fibers incorporating various dyes. Among various dyes, Rhodamine6G is the most widely and commonly used laser dye for the last four decades. Rhodamine6G has many desirable optical properties which make it preferable over other organic dyes such as Coumarin, Nile Blue, Curcumin etc. The research focus on the implementation of efficient fiber lasers and amplifiers for short fiber distances. Developing efficient plastic lasers with electrical pumping can be a new proposal in this field which demands lowest possible threshold pump energy of the gain medium in the cavity as an important parameter. One way of improving the efficiency of the lasers, through low threshold pump energy, is by modifying the gain of the amplifiers in the resonator/cavity. Success in the field of Radiative Decay Engineering can pave way to this problem. Laser gain media consisting of dye-nanoparticle composites can improve the efficiency by lowering the lasing threshold and enhancing the photostability. The electric field confined near the surface of metal nanoparticles due to Localized Surface Plasmon Resonance can be very effective for the excitation of active centers to impart high optical gain for lasing. Since the Surface Plasmon Resonance of nanoparticles of gold and silver lies in the visible range, it can affect the spectral emission characteristics of organic dyes such as Rhodamine6G through plasmon field generated by the particles. The change in emission of the dye placed near metal nanoparticles depend on plasmon field strength which in turn depends on the type of metal, size of nanoparticle, surface modification of the particle and the wavelength of incident light. Progress in fabrication of different types of nanostructures lead to the advent of nanospheres, nanoalloys, core-shell and nanowires to name a few. The thesis deals with the fabrication and characterisation of polymer optical fibers with various metallic and bimetallic nanostructures incorporated in the gain media for efficient fiber lasers with low threshold and improved photostability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Berberine is an alkaloid used as a fluorochrome in the identification of heparin and DNA. Enerback, 1974, described the technique used until today to study granules rich in heparin of vertebrate mast cells. Santos et al., 2003, studied mast cells of the mollusk Anomalocardia brasiliana using biochemical and histological analysis. This work used the fluorescent dye berberine technique to improve characterization of these cells. Mollusk organs (ctenidium and mantle) were processed with routine histological techniques. Tissue sections were treated with berberine 0,02% in redistilled water acidified to pH 4, by the addition of citric acid for 20 minutes. The visualization was made through fluorescence microscopy with ultraviolet region emission. The mast cell fluorescence had a strong yellow color, where cell nuclei appeared more greenish. This result was very similar to the ones reported before. Mast cells are location at the epithelium surface is the same in both organs, mantle and ctenidium. The fluorescence was easily observed in the granules. Therefore, this technique showed to be good and sensitive to study mast cell of invertebrates

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We demonstrated that a synthesized laser field consisting of an intense long (45 fs, multi-optical-cycle) laser pulse and a weak short (7 fs, few-optical-cycle) laser pulse can control the electron dynamics and high-order harmonic generation in argon, and generate extreme ultraviolet supercontinuum towards the production of a single strong attosecond pulse. The long pulse offers a large amplitude field, and the short pulse creates a temporally narrow enhancement of the laser field and a gate for the highest energy harmonic emission. This scheme paves the way to generate intense isolated attosecond pulses with strong multi-optical-cycle laser pulses.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Eu2+-doped high silica glass (HSG) is fabricated by sintering porous glass which is impregnated with europium ions. Eu2+-doped HSG is revealed to yield intense blue emission excited by ultraviolet (UV) light and near-infrared femtosecond laser. The emission profile obtained by UV excitation can be well traced by near-infrared femtosecond laser. The upconversion emission excited by 800 nm femtosecond laser is considered to be related to a two-photon absorption process from the relationship between the integrated intensity and the pump power. A tentative scheme of upconverted blue emission from Eu2+-doped HSG was also proposed. The HSG materials presented herein are expected to find applications in high density optical storage and three-dimensional color displays. (c) 2008 American Institute of Physics.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Coherent wake emission is a unique source of extreme ultraviolet radiation and has been recently shown to provide the basis for intense attosecond light. Here we present a novel scheme, supported by particle-in-cell simulations, demonstrating that enhancement and spectral control of the coherent wake emission signal can be achieved by modifying the interaction plasma density ramp. Significant tunable enhancement of harmonic emission is verified experimentally, with factors of > 50 in relative signal increase achieved in a narrow band of harmonics at the cutoff frequency.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Extreme ultraviolet (XUV) and X-ray harmonic spectra produced by intense laser-solid interactions have, so far, been consistent with Doppler upshifted reflection from collective relativistic plasma oscillations-the relativistically oscillating mirror mechanism(1-6). Recent theoretical work, however, has identified a new interaction regime in which dense electron nanobunches are formed at the plasma-vacuum boundary resulting in coherent XUV radiation by coherent synchrotron emission(7,8) (CSE). Our experiments enable the isolation of CSE from competing processes, demonstrating that electron nanobunch formation does indeed occur. We observe spectra with the characteristic spectral signature of CSE-a slow decay of intensity, I, with high-harmonic order, n, as I(n) proportional to n(-1.62) before a rapid efficiency rollover. Particle-in-cell code simulations reveal how dense nanobunches of electrons are periodically formed and accelerated during normal-incidence interactions with ultrathin foils and result in CSE in the transmitted direction. This observation of CSE presents a route to high-energy XUV pulses(7,8) and offers a new window on understanding ultrafast energy coupling during intense laser-solid density interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The emission of particles in the ultrafine range (<100 nm) from laser printers has not been reported until recently (Uhde et al., 2006; He et al., 2007; Morawska et al., 2009). The research reported to date has provided a body of information about printer emissions and shed light on particle formation mechanisms. However, until now, the effect of fuser roller temperature on particle emissions had not been comprehensively investigated...