989 resultados para Total Synthesis


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The total synthesis of seven here-to-fore unreported aromatic aminoalkanethiosulfuric acids, their physical properties and those of the aminoalcohol and bromoalkanamine intermediates are reported. All structures were established by including ¹H and 13C NMR, IR and MS spectroscopy and elemental analysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The natural occurrence, biological activities and synthetic approaches to natural eight-, nine-, and eleven-membered lactones is reviewed. These medium ring lactones are grouped according to ring size, and their syntheses are discussed. The structures of some natural products early identified as medium-ring lactones were revised after total synthesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A short and efficient synthesis of heptadeuterated 2,2,4,4,5,7,7-d7-cholestane (1) from cholesterol (3) is described. The deuterated material will be useful for the analysis of different sources of petroleum in analytical geochemistry laboratories as internal standard for quantification of steranes via gas chromatography-mass spectrometry (GC-MS).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The synthesis of 3-coumarin-carboxylic acids and their application to the total synthesis of the natural products ayapin, coumarin, and umbeliferone in undergraduate organic chemistry experiments is described herein. The synthetic approach consists of a one-pot cyclization between salyciladehydes and Meldrum's acid in water to produce the above mentioned acids, followed by decarboxylation under basic or radical conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two efficient, regio- and stereo controlled synthetic approaches to the synthesis of racemic analogs of pancratistatin have been accomplished and they serve as the model systems for the total synthesis of optically active 7-deoxy-pancratistatin. In the Diels-Alder approach, an efficient [4+2] cycloaddition of 3,4-methylenedioxyco- nitrostyrene with Danishefsky's diene to selectively form an exo-nitro adduct has been developed as the key step in the construction of the C-ring of the target molecule. In the Michael addition approach, the key step was a conjugate addition of an organic zinc-cuprate to the 3,4-methylenedioxy-(B-nitrostyrene, followed by a diastereocontroUed closure to form the cyclohexane C-ring of the target molecule via an intramolecular nitro-aldol cyclization on a neutral alumina surface. A chair-like transition state for such a cyclization has been established and such a chelation controlled transition state can be useful in the prediction of diastereoselectivity in other related 6-exo-trig nitroaldol reactions. Cyclization of the above products fi^om both approaches by using a Bischler-Napieralski type reaction afforded two lycoricidine derivatives 38 and 50 in good yields. The initial results from the above modeling studies as well as the analysis of the synthetic strategy were directed to a chiral pool approach to the total synthesis of optically active 7-deoxy-pancratistatin. Selective monsilylation and iodination of Ltartaric acid provided a chiral precursor for the proposed key Michael transformation. The outlook for the total synthesis of 7-deoxy-pancratistatin by this approach is very promising.A concise synthesis of novel designed, optically pure, Cz-symmetrical disulfonylamide chiral ligands starting from L-tartaric acid has also been achieved. This sequence employs the metallation of indole followed by Sfj2 replacement of a dimesylate as the key step. The activity for this Cz-symmetric chiral disulfonamide ligand in the catalytic enantioselective reaction has been confirmed by nucleophilic addition to benzaldehyde in the disulfonamide-Ti (0-i-Pr)4-diethylzinc system with a 48% yield and a 33% e.e. value. Such a ligand tethered with a suitable metal complex should be also applicable towards the total synthesis of 7-deoxy-pancratistatin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present thesis describes our latest results in the chemistry of morphine alkaloids. An enantiodivergent synthesis of codeine utilizing a cis-cyclohexadiene diol derived from microbial whole cell oxidation of ~-bromoethylbenzene,as starting material is discussed. The total synthesis of (+)-codeine in 14 steps featuring a Mitsunobu inversion and two intramolecular Heck cyclizations is presented. Investigation of a regioselective nucleophilic opening of a homochiral vinyl oxirane, which led to a total synthesis of the natural isomer of codeine, is detailed. Furthermore, described herein are novel methodologies designed for the transformation of naturally occurring opiates into medicinally relevant derivatives. Two studies on the conversion of thebaine into the commercially available analgesic hydrocodone, two novel ·transition metal catalyzed N-demethylation procedures for opioids, and the development of a catalytic protocol for N-demethylation and Nacylation of morphine and tropane alkaloids are presented. In addition, reactions of a menthol-based version of the Burgess reagent with epoxides are discussed. The synthetic utility of this novel chiral derivative of the Burgess reagent was demonstrated by an enantiodivergent formal total synthesis of balanol. ii

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present thesis describes the chemoenzymatic synthesis of ent-neopinone. The total synthesis of neopinone was accomplished in 14 steps from B-bromoethylbenzene. The synthesis began with a microbial oxidation of bromobenzene by Escherichia coli JM109(pDTG601) and features a Heck reaction, aldol condensation and a 1,6-conjugate addition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Described herein is the chemoenzymatic synthesis of several different types of unnatural analogues of Amaryllidaceae constituents. Development and refinement of existing and design and execution of new approaches towards the synthesis of C-1 analogues of pancratistatin and A-ring heterocyclic analogues of narciclasine are discussed. Evaluation of the new analogues as cancer growth inhibitory agents is also described

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis describes work towards the total synthesis of a 7-aza analogue of the Amaryllidaceae alkaloid narciclasine, a potent anticancer compound which suffers from a poor solubility profile. A key strategy in the formation of the C-ring is the biotransformation of bromobenzene by E.coli JM109. The densely substituted heterocyclic A-ring is obtained by sequential directed ortho-metalation and the fragment union accomplished with an amide coupling and subsequent intramolecular Heck reaction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We wish to report here our initial efforts toward the total synthesis of the potent antitumor agent dictyostatin, describing a short and efficient synthesis of the C11-C23 fragment. ( (C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The synthesis of the macrolactone core of migrastatin 2, its potent anti-metastasis analogue 34, and ester derivatives 35 and 38 are reported. The approach involves the use of a dihydroxylation reaction to establish the desired C-8 stereocenter followed by a metathesis cyclization reaction. The effects of the compounds on the migration and invasion of human breast cancer cells were evaluated by using the wound-healing and the Boyden-chamber cell-migration and cell-invasion assays. The results revealed a high potency of the macrolactones 2 and 34 and the ester analogues 35 and 38, which suggests they have potential as antimetastatic agents.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

CNPq

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The total synthesis of 8,9-licarinediols was selectively carried out from licarin A, previously obtained by oxidative coupling of (E)-isoeugenol. The corresponding enantiomerically pure (+)- and(-)-licarin A ester derivatives were subjected to Sharpless oxidation to yield the asymmetric C-8, C-9 dihydroxylation products, whose absolute configurations were established by means of the CD and NMR spectroscopic analyses of their Mosher ester derivatives. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ozone, first discovered in the mid 1800’s, is a triatomic allotrope of oxygen that is a powerful oxidant. For over a century, research has been conducted into the synthetic application and mechanism of reactions of ozone with organic compounds. One of the major areas of interest has been the ozonolysis of alkenes. The production of carbonyl compounds is the most common synthetic application of ozonolysis. The generally accepted mechanism developed by Rudolf Criegee for this reaction involves the 1,3-electrocyclic addition of ozone to the π bond of the alkene to form a 1,2,3-trioxolane or primary ozonide. The primary ozonide is unstable at temperatures above -100 °C and undergoes cycloreversion to produce the carbonyl oxide and carbonyl intermediates. These intermediates then recombine in another 1,3-electrocyclic addition step to form the 1,2,4-trioxolane or final ozonide. While the final ozonide is often isolable, most synthetic applications of ozonolysis require a subsequent reductive or oxidative step to form the desired carbonyl compound. During investigations into the nucleophilic trapping of the reactive carbonyl oxide, it was discovered that when amines were used as additives, an increased amount of reaction time was required in order to consume all of the starting material. Surprisingly, significant amounts of aldehydes and a suppression of ozonide formation also occurred which led to the discovery that amine N-oxides formed by the ozonation of the amine additives in the reaction were intercepting the carbonyl oxide. From the observed production of aldehydes, our proposed mechanism for the in situ reductive ozonolysis reaction with amine N-oxides involves the nucleophilic trapping of the carbonyl oxide intermediate to produce a zwitterionic adduct that fragments into 1O2, amine and the carbonyl thereby avoiding the formation of peroxidic intermediates. With the successful total syntheses of peroxyacarnoates A and D by Dr. Chunping Xu, the asymmetric total synthesis of peroxyplakorate A3 was investigated. The peroxyplakoric acids are cyclic peroxide natural products isolated from the Plakortis species of marine sponge that have been found to exhibit activity against malaria, cancer and fungi. Even though the peroxyplakorates differ from the peroxyacarnoates in the polyunsaturated tail and the head group, the lessons learned from the syntheses of the peroxyacarnoates have proven to be valuable in the asymmetric synthesis of peroxyplakorate A3. The challenges for the asymmetric synthesis of peroxyplakorate A3 include the stereospecific formation of the 3-methoxy-1,2-dioxane core with a propionate head group and the introduction of oxidation sensitive dienyl tail in the presence of a reduction sensitive 1,2-dioxane core. It was found that the stereochemistry of two of the chiral centers could be controlled by an anti-aldol reaction of a chiral propionate followed by the stereospecific intramolecular cyclization of a hydroperoxyacetal. The regioselective ozonolysis of a 1,2-disubstituted alkene in the presence of a terminal alkyne forms the required hydroperoxyacetal as a mixture of diastereomers. Finally, the dienyl tail is introduced by a hydrometallation/iodination of the alkyne to produce a vinyl iodide followed by a palladium catalyzed coupling reaction. While the coupling reaction was unsuccessful in these attempts, it is still believed that the intramolecular cyclization to introduce the 1,2-dioxane core could prove to be a general solution to many other cyclic peroxides natural products.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The history of the quinine synthesis can be used as a case study to emphasize that science is influenced by social and historical processes. The first efforts toward the synthesis of this substance, which until recently was the only treatment for malaria, were by Perkin in 1856 when, trying to obtain quinine,,. he synthesized mauveine. Since then, the quest for the total synthesis of quinine involved several characters in a web of controversies. A major step in this process was made in 1918 by Rabe and Kindler, who proposed the synthesis of quinine from quinotoxine. Twenty-six years later, after obtaining the total synthesis of quinotoxine, Woodward and Doering announced the total synthesis of quinine. However, the lack of experimental details about Rabe and Kindler's process, associated with Woodward and Doering's failure to reproduce it, raised a series of doubts about the synthesis. Stork and colleagues questioned the veracity of the experimental data and even the scientific reputation of the involved researchers. Doubts remained alive until 2008, when Williams and Smith reported, not without reservations, the reproducibility of Rabe and Kindler's protocol. The scientific knowledge as a social and historical development, its legitimating process, and the absence of neutrality in science constitute aspects that can be discussed from this case study, providing significant contributions to science education, in particular, to the initial or continued training of chemistry teachers.