999 resultados para TEMPERATURE-GROWN GAAS


Relevância:

50.00% 50.00%

Publicador:

Resumo:

The optimum growth condition of GaInNAs/GaAs quantum wells (QWs) by plasma-assisted molecular beam epitaxy was investigated. High-resolution X-ray diffraction and photoluminescence (PL) measurements showed that ion damage drastically degraded the quality of GaNAs and GaInNAs QWs and that ion removal magnets can effectively remove the excess ion damage. Remarkable improvement of PL intensity and obvious appearance of pendellosung fringes were observed by removing the N ions produced in the plasma cell. When the growth rate increased from 0.73 to 1.2 ML/s, the optimum growth temperature was raised from 460 degreesC to 480 degreesC and PL peak intensity increased two times. Although the N composition decreased with increasing growth rate, degradation of optical properties of GaInNAs QWs was observed when the growth rate was over 0.92 ML/s. Due to low-temperature growth of GaInNAs QWs, a distinctive reflection high-energy electron diffraction pattern was observed only when the GaAs barrier was grown under lower As-4 pressure. The samples with GaAs barriers grown under lower As-4 pressure (V/III ratio about 24) exhibited seven times increase in PL peak intensity compared with those grown under higher As-4 pressure (V/III ratio about 50). (C) 2001 Elsevier Science B,V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A self-organized In0.5Ga0.5As/GaAs quantum island structure emitting at 1.35 mum at room temperature has been successfully fabricated by molecular beam epitaxy via cycled (InAs)(1)/GaAs)(1)monolayer deposition method. The photoluminescence measurement shows that a very narrow linewidth of 19.2 meV at 300 K has been reached for the first time, indicating effective suppression of inhomogeneous broadening of optical emission from the In0.5Ga0.5As island structure due to indium segregation reduction by introducing an AlAs layer and the strain reduction by inserting an In0.2Ga0.8As layer overgrown on the top of islands. The mound-like morphology of the islands elongated along the [1 (1) over bar0] azimuth are observed by the atomic force microscopy measurement, which reveals the fact that strain in the islands is partially relaxed along the [1 (1) over bar0] direction. Our results present important information for the fabrication of 1.3 mum wavelength quantum dot devices.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The effect of ion-induced damage on GaNAs/GaAs quantum wells (QWs) grown by molecular beam epitaxy employing a DC plasma as the N source was investigated. Ion-induced damage results in: (i) an observed disappearance of pendellosung fringes in the X-ray diffraction pattern of the sample; (ii) a drastic decrease in intensity and a broadening in the full-width at half-maximum of photoluminescence spectra. It was shown that ion-induced damage strongly affected the bandedge potential fluctuations of the QWs. The bandedge potential fluctuations for the samples grown with and without ion removal magnets (IRMs) are 44 and 63 meV, respectively. It was found that the N-As atomic interdiffusion at the interfaces of the QWs was enhanced by the ion damage-induced defects. The estimated activation energies of the N-As atomic interdiffusion for the samples grown with and without IRMs are 3.34 and 1.78 eV, respectively. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

1.35 mum photoluminescence (PL) with a narrow linewidth of only 19.2 meV at room temperature has been achieved in In0.5Ga0.5As islands structure grown on GaAs (1 0 0) substrate by solid-source molecular beam epitaxy. Atomic force microscopy (AFM) measurement reveals that the 16-ML-thick In0.5Ga0.5As islands show quite uniform InGaAs mounds morphology along the [ 1(1) over bar 0] direction with a periodicity of about 90 nm in the [1 1 0] direction. Compared with the In0.5Ga0.5As alloy quantum well (QW) of the same width, the In0.5Ga0.5As islands structure always shows a lower PL peak energy and narrower full-width at half-maximum (FWHM), also a stronger PL intensity at low excitation power and more efficient confinement of the carriers. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

InAs quantum dots (QDs) grown on GaAs surface are investigated. The observed abnormal photoluminescence (PL) properties, including extremely sharp high-energy peaks, almost temperature-independent linewidth, and fast thermal quenching, are discussed in terms of the strong quantum confinement effects due to the absence of a cap layer and the lack of carrier redistribution channel caused by the small number of QDs capable of contributing to PL and the high-density surface defects. (C) 2000 American Institute of Physics. [S0003-6951(00)01244-4].

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this work we report the photoluminescence (PL) and interband absorption study of Si-modulation-doped multilayer InAs/GaAs quantum dots grown by molecular beam epitaxy (MBE) on (100) oriented GaAs substrates. Low-temperature PL shows a distinctive double-peak feature. Power-dependent PL and transmission electron microscopy (TEM) confirm that they stem from the ground states emission of islands of bimodal size distribution. Temperature-dependent PL study indicates that the family of small dots is ensemble effect dominated while the family of large dots is likely to be dominated by the intrinsic property of single quantum dots (QDs). The temperature-dependent PL and interband absorption measurements are discussed in terms of thermalized redistribution of the carriers among groups of QDs of different sizes in the ensemble. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

InAs self-organized quantum dots (QDs) grown on annealed low-temperature GaAs (LT-GaAs) epi-layers and on normal temperature GaAs buffer layers have been compared by transmission electron microscopy (TEM) and photoluminescence (PL) measurements. TEM evidences that self-organized QDs were formed with a smaller size and larger density than that on normal GaAs buffer layers. It is discussed that local tensile surface strain regions that are preferred sites for InAs islands nucleation are increased in the case of the LT-GaAs buffer layers due to exhibiting As precipitates. The PL spectra show a blue-shifted peak energy with narrower linewidth revealing the improvement of optical properties of the QDs grown on LT-GaAs epi-layers. It suggests us a new way to improve the uniformity and change the energy band structure of the InAs self-organized QDs by carefully controlling the surface stress states of the LT-GaAs buffers on which the QDs are formed. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Self-assembled InAs nanostructures on (0 0 1)InP substrate have been grown by molecular beam epitaxy (MBE) and evaluated by transmission electron microscopy (TEM) and photoluminescence (PL). It is found that the morphologies of InAs nanostructures depend strongly on the underlying alloy. Through introducing a lattice-matched underlying InAlGaAs layer on InAlAs buffer layer, the InAs quantum dots (QDs) can be much more uniform in size and great improvement in PL properties can be attained at the same time. In particular, 1.55 mu m luminescence at room temperature (RT) can be realized in InAs QDs deposited on (0 0 1)InP substrate with underlying InAlGaAs layer. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Photoluminescence measurements have been performed on cubic GaN films with carrier concentration as low as 3 x 10(13) cm(-3). From the temperature and excitation intensity dependence, the emission lines at 3.268, 3.150 and 3.081 eV were assigned to the excitonic, donor-acceptor pair, and free-to-acceptor transitions, respectively Additionally, we observed two additional emission lines at 2.926 and 2.821 eV, and suggested that they belong to donor-acceptor pair transitions. Furthermore, from the temperature dependence of integral intensities, we confirmed that three donor-acceptor pair transitions (3.150, 2.926, and 2.821 eV) are from a common shallow donor to three different accepters. The excitonic emission at 3.216 eV has a full-width-at-half-maximum value of 41 meV at room temperature, which indicates a good optical quality of our sample.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We have studied the effect of rapid thermal annealing (RTA) on GaInNAs/GaAs quantum wells (QWs) grown by molecular-beam epitaxy using a dc plasma as the N source. It was found that RTA at low temperature (LT, 650 degrees C) and high temperature (HT, 900 degrees C) could both improve the QW quality significantly. To clarify the mechanism of quality improvement by RTA, a magnetic field perpendicular to the path of the N plasma flux was applied during the growth of the GaInNAs layers for the sake of comparison. It was found that LT-RTA mainly removed dislocations at interfaces related to the ion bombardment, whereas, HT-RTA further removed dislocations originating from the growth. LT-RTA caused only a slight blueshift of photoluminescence peak wavelength, probably due to defect-assisted interdiffusion of In-Ga at the QW interfaces. The blueshift caused by HT-RTA, on the other hand, was much larger. It is suggested that this is due to the fast defect-assisted diffusion of N-As at the QW interfaces. As defects are removed by annealing, the diffusion of In-Ga at interfaces would be predominant. (C) 2000 American Institute of Physics. [S0003- 6951(00)01535-7].

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present some results on the effect of initial buffer layer on the crystalline quality of Cubic GaN epitaxial layers grown on GaAs(100) substrates by metalorganic chemical vapor deposition. Photoluminescence and Hall measurements were performed to characterize the electrical and optical properties of cubic GaN. The crystalline quality subsequently grown high-temperature (HT) cubic GaN layers strongly depended on thermal effects during the temperature ramping process after low temperature (LT) growth of the buffer layers. Atomic force microscope (AFM) and reflection high-energy electron diffraction (RHEED) were employed to investigate this temperature ramping process. Furthermore, the role of thermal treatment during the temperature ramping process was identified. Using the optimum buffer layer, the full width at half maxim (FWHM) at room temperature photoluminescence 5.6 nm was achieved. To our knowledge, this is the best FWHM value for cubic GaN to date. The background carrier concentration was as low as 3 x 10(13) cm(-3). (C) 2000 Published by Elsevier Science S.A. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We investigated the photoluminescence (PL) of self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots (QDs) grown on (311)A GaAs substrate. The PL peak at 10 K shifts to lower energy by about 30 meV when the excitation power decreases by two orders of magnitude. It has a red-shift under pressure, that is the character of X-like transition. Moreover, its peak energy is smaller than the indirect gap of bulk Al0.5Ga0.5As and In0.55Al0.45As. We then attribute that peak to the type-II transition between electrons in X valley of Al0.5Ga0.5As and heavy holes in In0.55Al0.45As QDs. A new peak appears at the higher energy when temperature is increased above 70 K. It shifts to higher energy with increasing pressure, corresponding to the transition from conduction Gamma band to valence band in QDs. The measurements demonstrate that our In0.55Al0.45As/Al0.5Ga0.5As quantum dots are type-II QDs with X-like conduction-band minimum. To interpret the second X-related peak emerged under pressure, we discuss the X-valley split in QDs briefly. (C) 2000 American Institute of Physics. [S0003-6951(00)04622-2].

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The optical properties of cubic GaN films have been investigated in the temperature range of 10-300 K. Five peaks were observed at 10 K. From the dependence of photoluminescence emissions on the temperature and excitation intensity, we have assigned two of the five peaks (2.926 and 2.821 eV) to donor-acceptor pair (DAP) transitions. Furthermore, these two peaks were found to be related to a common shallow donor involved in the peak position previously reported at 3.150 eV. The intensities of DAP transitions were much weaker than that of excitonic emission even at low temperature, indicating a relatively high purity of our samples. (C) 2000 American Institute of Physics. [S0003-6951(00)00921-9].

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Postgrowth rapid thermal annealing was performed on InGaAs/GaAs quantum dots grown by molecular beam epitaxy. The blue shift of the emission peak and the narrowing of the luminescence line width are observed at lower annealing temperature. However, when the annealing temperature is increased to 850 degrees C, the emission line width becomes larger. The TEM image of this sample shows that the surface becomes rough, and some large clusters are formed, which is due to the interdiffusion of In, Ga atoms at the InGaAs/GaAs interface and to the strain relaxation. The material is found to degrade dramatically when the annealing temperature is further increased to 900 degrees C, while emission from quantum dots can still be detected, along with the appearance of the emission from excited state. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this work we report the optical and microscopic properties of self-organized InAs/GaAs quantum dots grown by molecular beam epitaxy on (1 0 0) oriented GaAs substrates. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy (STM) image for uncapped sample. The power-dependent photoluminescence (PL) study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. It is shown that the coupling between quantum dots plays a key role in unusual temperature dependence of QD photoluminescence. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 mu m at room temperature. (C) 2000 Elsevier Science B.V. All rights reserved.