981 resultados para Size reduction


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an approach to integrate an artificial intelligence (AI) technique, concretely rule-based processing, into mobile agents. In particular, it focuses on the aspects of designing and implementing an appropriate inference engine of small size to reduce migration costs. The main goal is combine two lines of agent research, First, the engineering oriented approach on mobile agent architectures, and, second, the AI related approach on inference engines driven by rules expressed in a restricted subset of first-order predicate logic (FOPL). In addition to size reduction, the main functions of this type of engine were isolated, generalized and implemented as dynamic components, making possible not only their migration with the agent, but also their dynamic migration and loading on demand. A set of classes for representing and exchanging knowledge between rule-based systems was also proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crytallite and pore-size evolution during isothermal sintering (400 ≤ T ≤ 700°C) of SnO2 xerogels was studied by X-ray line broadening and nitrogen adsorption-desorption isotherms. The experimental results show a strong anisotropy of crystallite growth between [110] and [101] directions. The preferential growth at [101] is followed by an increase in the mean pore size, reduction of the specific surface area and invariance of total pore volume. This behaviour is typical of grain coalescence sintering. The kinetic analysis of experimental results suggests that the crystallite coalescence at [101] is governed by lattice diffusion. The strong anisotropy of the growth causes pore-size distribution broadening, hindering the macroscopic shrinkage of the compact during sintering. © 1996 Chapman & Hall.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ginecologia, Obstetrícia e Mastologia - FMB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Foram preparados cimentos do sistema binário CaO-Al2O3 por meio de uma rota que emprega o processo sonoquímico seguido de tratamento térmico. Convencionalmente estes compostos são fabricados a partir da fusão ou da sinterização de uma mistura de calcário com bauxito ou com alumina. O maior inconveniente associado a este tipo de síntese é a necessidade de temperaturas elevadas e o grande consumo de energia. Na rota sonoquímica a cálcia, juntamente com a alumina em suspensão aquosa, são introduzidas num banho de ultra-som por tempo determinado. Em seguida, após a evaporação da água, o material resultante é tratado termicamente. Quando um sistema é submetido ao processo sonoquímico, alterações na morfologia superficial das partículas podem ser induzidas pelas ondas ultra-sônicas, incluindo a redução do tamanho dessas partículas. Como conseqüência, estes materiais tornam-se mais reativos, facilitando a síntese final dos aluminatos de cálcio durante o tratamento térmico. Foi estudada a ação das ondas ultra-sônicas e a influência das condições de tratamento térmico em duas composições molares de cálcia:alumina de 1:1 e 1:2. As temperaturas empregadas foram 1000 ºC, 1200 ºC e 1300 ºC com patamares de 1 e 6 h. O material obtido foi caracterizado por microscopia eletrônica de varredura, difração de raios X e as fases presentes foram semi-quantificadas pelo método de Rietveld. Também foram realizados ensaios de compressão diametral para avaliar a resistência mecânica dos produtos da síntese. Foram preparadas pastas constituídas de cimento, alumina e água, utilizando como cimento os aluminatos de cálcio preparados pelo processo sonoquímico e um cimento comercial, como referência.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The trial was carried to evaluate the nutritional effects of mulberry leaf hay in broiler chickens. Five treatments were used: control (no mulberry, 3.16% CF); 15% mulberry (4.14% CF); 30% mulberry (5.09% CF), no mulberry (4.14% CF); no mulberry (5.09% CF). A randomized blocks design was used, with two blocks and three replications into the blocks to evaluate performance index, histopathological examination of the visceral organs and morphometric measurements of the hepatocyte nucleus and pancreatic acini. A poor performance index was observed for broilers feeding on mulberry leaves; lesions such as steatosis, proliferation of hepatic duct cells and multiple necrosis were found in the livers of the chickens fed with 30% mulberry (5.09% CF), as well as size reduction of the hepatocyte nucleus and pancreatic acini. From these data, it is concluded that mulberry probably has some toxic substance which can interfere in the improvement of diet ingredients, resulting in damage to broiler chickens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the work presented here, Ce0.97Cu0.03O2 nanoparticles were synthesized by a microwave-assisted hydrothermal method under different synthesis temperatures. The obtained nanoparticles were tested as catalysts in preferential oxidation of CO to obtain CO-free H2 (PROX reaction). The samples were characterized by X-ray diffraction, transmission electron microscopy (TEM), electron paramagnetic resonance spectroscopy (EPR) and temperature-programmed reduction (TPR). X-ray diffraction measurements detected the presence of pure cubic CeO2 for all synthesized samples. TEM images of the Ce0.97Cu0.03O2 nanoparticles revealed that samples synthesized at 80°C are composed mainly of nanospheres with an average size of 20 nm. The formation of some nanorods with an average diameter of 8 nm and 40 nm in length, and the size reduction of the nanoparticles from 20 to approximately 15 nm is observed with increasing synthesis temperature. EPR spectra indicated that copper is found well dispersed in sample synthesized at 160°C, located predominant in surface sites of ceria. For samples synthesized at 80 and 120°C, the species are less dispersed than in the other one, resulting in the formation of Cu2+−Cu2+ dimmers at the surface of ceria. TPR profiles presented two reduction peaks, one below 400°C attributed to the reduction of different copper species and a second peak around 800°C attributed to the reduction of Ce4+→ Ce3+ species located in the volume of the nanoparticles. The peak related to the reduction of copper species shifts to lower temperatures with increasing synthesis temperature, i.e., the sample synthesized at 160°C is more easily reduced than the ones synthesized at 120 and 80°C. The nanoparticles showed active as catalysts for the CO-PROX reaction. The microwave-assisted method revealed efficient for the synthesis of Ce0.97Cu0.03O2 nanoparticles with copper species selective for the CO-PROX reaction, which reaches CO conversions up to 92% for the sample synthesized at 160°C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Odontogenic cysts are considered as nonneoplasic benign lesions. Among the cysts, keratocyst odontogenic tumor (KCOT) is an intra‑osseous tumor characterized by parakeratinized stratified squamous epithelium and a potential for aggressive, infiltrative behavior, and for the possibility to develop carcinomas in the lesion wall. Thus, the aim of this study was to describe a clinical case of KCOT in a young patient and discuss the treatment alternatives to solve this case. A 15‑year‑old male was referred for treatment of a giant lesion in his left side of the mandible. After the biopsy, a diagnostic of KCOT was made, and the following procedures were planned for KCOT treatment. Marsupialization was performed for lesion decompression and consequent lesion size reduction. Afterward, enucleation for complete KCOT removal was performed followed by third mandibular molar extraction. After 5 years, no signs of recurrence were observed. The treatment proposed was efficient in removing the KCOT with minimal surgical morbidity and optimal healing process, and the first and second mandibular molars were preserved with pulp vitality. In conclusion, this treatment protocol was an effective and conservative approach for the management of the KCOT, enabling the reduction of the initial lesion, the preservation of anatomical structures and teeth, allowing quicker return to function. No signs of recurrence after 5 years were observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laser shock peening is a technique similar to shot peening that imparts compressive residual stresses in materials for improving fatigue resistance. The ability to use a high energy laser pulse to generate shock waves, inducing a compressive residual stress field in metallic materials, has applications in multiple fields such as turbo-machinery, airframe structures, and medical appliances. The transient nature of the LSP phenomenon and the high rate of the laser's dynamic make real time in-situ measurement of laser/material interaction very challenging. For this reason and for the high cost of the experimental tests, reliable analytical methods for predicting detailed effects of LSP are needed to understand the potential of the process. Aim of this work has been the prediction of residual stress field after Laser Peening process by means of Finite Element Modeling. The work has been carried out in the Stress Methods department of Airbus Operations GmbH (Hamburg) and it includes investigation on compressive residual stresses induced by Laser Shock Peening, study on mesh sensitivity, optimization and tuning of the model by using physical and numerical parameters, validation of the model by comparing it with experimental results. The model has been realized with Abaqus/Explicit commercial software starting from considerations done on previous works. FE analyses are “Mesh Sensitive”: by increasing the number of elements and by decreasing their size, the software is able to probe even the details of the real phenomenon. However, these details, could be only an amplification of real phenomenon. For this reason it was necessary to optimize the mesh elements' size and number. A new model has been created with a more fine mesh in the trough thickness direction because it is the most involved in the process deformations. This increment of the global number of elements has been paid with an "in plane" size reduction of the elements far from the peened area in order to avoid too high computational costs. Efficiency and stability of the analyses has been improved by using bulk viscosity coefficients, a merely numerical parameter available in Abaqus/Explicit. A plastic rate sensitivity study has been also carried out and a new set of Johnson Cook's model coefficient has been chosen. These investigations led to a more controllable and reliable model, valid even for more complex geometries. Moreover the study about the material properties highlighted a gap of the model about the simulation of the surface conditions. Modeling of the ablative layer employed during the real process has been used to fill this gap. In the real process ablative layer is a super thin sheet of pure aluminum stuck on the masterpiece. In the simulation it has been simply reproduced as a 100µm layer made by a material with a yield point of 10MPa. All those new settings has been applied to a set of analyses made with different geometry models to verify the robustness of the model. The calibration of the model with the experimental results was based on stress and displacement measurements carried out on the surface and in depth as well. The good correlation between the simulation and experimental tests results proved this model to be reliable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The macroscopic properties of oily food dispersions, such as rheology, mechanical strength, sensory attributes (e.g. mouth feel, texture and even flavour release) and as well as engineering properties are strongly determined by their microstructure, that is considered a key parameter in the understanding of the foods behaviour . In particular the rheological properties of these matrices are largely influenced by their processing techniques, particle size distribution and composition of ingredients. During chocolate manufacturing, mixtures of sugar, cocoa and fat are heated, cooled, pressurized and refined. These steps not only affect particle size reduction, but also break agglomerates and distribute lipid and lecithin-coated particles through the continuous phase, this considerably modify the microstructure of final chocolate. The interactions between the suspended particles and the continuous phase provide information about the existing network and consequently can be associated to the properties and characteristics of the final dispersions. Moreover since the macroscopic properties of food materials, are strongly determined by their microstructure, the evaluation and study of the microstructural characteristics, can be very important for a through understanding of the food matrices characteristics and to get detailed information on their complexity. The aim of this study was investigate the influence of formulation and each process step on the microstructural properties of: chocolate type model systems, dark milk and white chocolate types, and cocoa creams. At the same time the relationships between microstructural changes and the resulting physico-chemical properties of: chocolate type dispersions model systems dark milk and white chocolate were investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis focuses on the controlled assembly of monodisperse polymer colloids into ordered two-dimensional arrangements. These assemblies, commonly referred to as colloidal monolayers, are subsequently used as masks for the generation of arrays of complex metal nanostructures on solid substrates.rnThe motivation of the research presented here is twofold. First, monolayer crystallization methods were developed to simplify the assembly of colloids and to produce more complex arrangements of colloids in a precise way. Second, various approaches to colloidal lithography are designed with the aim to include novel features or functions to arrays of metal nanostructures.rnThe air/water interface was exploited for the crystallization of colloidal monolayer architectures as it combines a two-dimensional confinement with a high lateral mobility of the colloids that is beneficial for the creation of high long range order. A direct assembly of colloids is presented that provides a cheap, fast and conceptually simple methodology for the preparation of ordered colloidal monolayers. The produced two-dimensional crystals can be transformed into non-close-packed architectures by a plasma-induced size reduction step, thus providing valuable masks for more sophisticated lithographic processes. Finally, the controlled co-assembly of binary colloidal crystals with defined stoichiometries on a Langmuir trough is introduced and characterized with respect to accessible configurations and size ratios. rnSeveral approaches to lithography are presented that aim at introducing different features to colloidal lithography. First, using metal-complex containing latex particles, the synthesis of which is described as well, symmetric arrays of metal nanoparticles can be created by controlled combustion of the organic material of the colloids. The process does not feature an inherent limit in nanoparticle size and is able to produce complex materials as will be demonstrated for FePt alloy particles. Precise control over both size and spacing of the particle array is presented. rnSecond, two lithographic processes are introduced to create sophisticated nanoparticle dimer units consisting of two crescent shaped nanostructures in close proximity; essentially by using a single colloid as mask to generate two structures simultaneously. Strong coupling processes of the parental plasmon resonances of the two objects are observed that are accompanied by high near-field enhancements. A plasmon hybridization model is elaborated to explain all polarization dependent shifts of the resonance positions. Last, a technique to produce laterally patterned, ultra-flat substrates without surface topographies by embedding gold nanoparticles in a silicon dioxide matrix is applied to construct robust and re-usable sensing architectures and to introduce an approach for the nanoscale patterning of solid supported lipid bilayer membranes. rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work aims at developing a transcutaneous immunization (TCI) approach in order to activate cytotoxic T-cells. A tumor specific immune response was therefore generated by the TLR7-Agonist imiquimod. Five commercially available creams including the innovators product Aldara® 5% creme were assessed to ascertain their capability to induce an immune response in C57BL/6 mice after dermal administration. Moreover, creams were investigated regarding their imiquimod permeation in a Franz-diffusion cell model. Results obtained from this study were used to develop novel formulation approaches based on dissolved state imiquimod in a submicron scale range. High pressure homogenization ensured emulsification as well as particle size reduction. A freeze dried spreadable solid nanoemulsion based on sucrose fatty acid esters and oil components represented a major formulation approach. Within the scope of this approach the influence of pharmaceutical oils i.e. middle chain triglycerides, avocado oil, jojoba wax, and squalen was assessed towards their TCI performance. Furthermore, an aqueous jojoba wax based emulsion gel was developed. Unlike the innovators product, all formulations demonstrated a distinctly reduced imiquimod permeation across murine skin, a fact particularly evident in case of jojoba wax. Squalen significantly augmented in vivo immune response (p≤0.05 Mann-Whitney-Test). The emulsion gel demonstrated a 10fold decrease of imiquimod permeation. In comparison with the innovators product, the emulsion gel induced an equal immune response with a simultaneously enhanced tumor rejection in a mouse model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To evaluate the consecutive treatment results regarding pterygium recurrence and the efficacy of exclusive strontium-/yttrium-90 beta-irradiation for primary and recurrent pterygia and to analyze the functional outcome. PATIENTS AND METHODS: Between October 1974 and December 2005, 58 primary and 21 recurrent pterygia were exclusively treated with strontium-/yttrium-90 beta-irradiation with doses ranging from 3,600 to 5,500 cGy. The follow-up time was 46.6 +/- 26.7 months, with a median of 46.5 months. RESULTS: The treatment led to a size reduction in all pterygia (p < 0.0001). Neither recurrences nor side effects were observed during therapy and follow-up in this study. Best-corrected visual acuity increased (p = 0.0064). Corneal astigmatism was reduced in recurrent pterygia (p = 0.009). CONCLUSION: Exclusive strontium-/yttrium-90 beta-irradiation of pterygia is a very efficient and well-tolerated treatment, with remarkable aesthetic and rehabilitative results in comparison to conventional treatments, especially for recurrent lesions which have undergone prior surgical excision.