853 resultados para Science - Teacher training
Resumo:
The present paper presents a historical study on the acceptance of Newton's corpuscular theory of light in the early eighteenth century. Isaac Newton first published his famous book Opticks in 1704. After its publication, it became quite popular and was an almost mandatory presence in cultural life of Enlightenment societies. However, Newton's optics did not become popular only via his own words and hands, but also via public lectures and short books with scientific contents devoted to general public (including women) that emerged in the period as a sort of entertainment business. Lectures and writers stressed the inductivist approach to the study of nature and presented Newton's ideas about optics as they were consensual among natural philosophers in the period. The historical case study presented in this paper illustrates relevant aspects of nature of science, which can be explored by students of physics on undergraduate level or in physics teacher training programs.
Resumo:
Science professional development, which is fundamental to science education improvement, has been described as being weak and fragmentary. The purpose of this study was to investigate teachers' perceptions of informal science professional development to gain an in-depth understanding of the essence of the phenomenon and related science-teaching dispositions. Based on the frameworks of phenomenology, constructivism, and adult learning theory, the focus was on understanding how the phenomenon was experienced within the context of teachers' everyday world. ^ Data were collected from eight middle-school teachers purposefully selected because they had participated in informal programs during Project TRIPS (Teaching Revitalized Through Informal Programs in Science), a collaboration between the Miami-Dade school district, government agencies (including NASA), and non-profit organizations (including Audubon of Florida). In addition, the teachers experienced hands-on labs offered through universities (including the University of Arizona), field sites, and other agencies. ^ The study employed Seidman's (1991) three-interview series to collect the data. Several methods were used to enhance the credibility of the research, including using triangulation of the data. The interviews were transcribed, color-coded and organized into six themes that emerged from the data. The themes included: (a) internalized content knowledge, (b) correlated hands-on activities, (c) enhanced science-teaching disposition, (d) networking/camaraderie, (e) change of context, and (f) acknowledgment as professionals. The teachers identified supportive elements and constraints related to each theme. ^ The results indicated that informal programs offering experiential learning opportunities strengthened understanding of content knowledge. Teachers implemented hands-on activities that were explicitly correlated to their curriculum. Programs that were conducted in a relaxed context enhanced teachers' science-teaching dispositions. However, a lack of financial and administrative support, perceived safety risks, insufficient reflection time, and unclear itineraries impeded program implementation. The results illustrated how informal educators can use this cohesive model as they develop programs that address the supports and constraints to teachers' science instruction needs. This, in turn, can aid teachers as they strive to provide effective science instruction to students; notions embedded in reforms. Ultimately, this can affect how learners develop the ability to make informed science decisions that impact the quality of life on a global scale. ^
Resumo:
The overall purpose of this collected papers dissertation was to examine the utility of a cognitive apprenticeship-based instructional coaching (CAIC) model for improving the science teaching efficacy beliefs (STEB) of preservice and inservice elementary teachers. Many of these teachers perceive science as a difficult subject and feel inadequately prepared to teach it. However, teacher efficacy beliefs have been noted as the strongest indicator of teacher quality, the variable most highly correlated with student achievement outcomes. The literature is scarce on strong, evidence-based theoretical models for improving STEB. This dissertation is comprised of two studies. STUDY #1 was a sequential explanatory mixed-methods study investigating the impact of a reformed CAIC elementary science methods course on the STEB of 26 preservice teachers. Data were collected using the Science Teaching Efficacy Belief Instrument (STEBI-B) and from six post-course interviews. A statistically significant increase in STEB was observed in the quantitative strand. The qualitative data suggested that the preservice teachers perceived all of the CAIC methods as influential, but the significance of each method depended on their unique needs and abilities. STUDY #2 was a participatory action research case study exploring the utility of a CAIC professional development program for improving the STEB of five Bahamian inservice teachers and their competency in implementing an inquiry-based curriculum. Data were collected from pre- and post-interviews and two focus group interviews. Overall, the inservice teachers perceived the intervention as highly effective. The scaffolding and coaching were the CAIC methods portrayed as most influential in developing their STEB, highlighting the importance of interpersonal relationship aspects in successful instructional coaching programs. The teachers also described the CAIC approach as integral in supporting their learning to implement the new inquiry-based curriculum. The overall findings hold important implications for science education reform, including its potential to influence how preservice teacher training and inservice teacher professional development in science are perceived and implemented. Additionally, given the noteworthy results obtained over the relatively short durations, CAIC interventions may also provide an effective means of achieving improvements in preservice and inservice teachers’ STEB more expeditiously than traditional approaches.
Resumo:
The overall purpose of this collected papers dissertation was to examine the utility of a cognitive apprenticeship-based instructional coaching (CAIC) model for improving the science teaching efficacy beliefs (STEB) of preservice and inservice elementary teachers. Many of these teachers perceive science as a difficult subject and feel inadequately prepared to teach it. However, teacher efficacy beliefs have been noted as the strongest indicator of teacher quality, the variable most highly correlated with student achievement outcomes. The literature is scarce on strong, evidence-based theoretical models for improving STEB.^ This dissertation is comprised of two studies. STUDY #1 was a sequential explanatory mixed-methods study investigating the impact of a reformed CAIC elementary science methods course on the STEB of 26 preservice teachers. Data were collected using the Science Teaching Efficacy Belief Instrument (STEBI-B) and from six post-course interviews. A statistically significant increase in STEB was observed in the quantitative strand. The qualitative data suggested that the preservice teachers perceived all of the CAIC methods as influential, but the significance of each method depended on their unique needs and abilities. ^ STUDY #2 was a participatory action research case study exploring the utility of a CAIC professional development program for improving the STEB of five Bahamian inservice teachers and their competency in implementing an inquiry-based curriculum. Data were collected from pre- and post-interviews and two focus group interviews. Overall, the inservice teachers perceived the intervention as highly effective. The scaffolding and coaching were the CAIC methods portrayed as most influential in developing their STEB, highlighting the importance of interpersonal relationship aspects in successful instructional coaching programs. The teachers also described the CAIC approach as integral in supporting their learning to implement the new inquiry-based curriculum. ^ The overall findings hold important implications for science education reform, including its potential to influence how preservice teacher training and inservice teacher professional development in science are perceived and implemented. Additionally, given the noteworthy results obtained over the relatively short durations, CAIC interventions may also provide an effective means of achieving improvements in preservice and inservice teachers’ STEB more expeditiously than traditional approaches.^
Resumo:
Over the last decade in Australia, the role of the teacher has changed. Teachers are now expected to model and foster in their students a wide range of skills such as critical thinking, self-regulated learning, knowledge of self and others and lifelong learning. These changes are having a significant impact on the design of pre-service teacher education programmes, with university educators re-evaluating the teacher training curriculum and embedded pedagogical processes in order to consider how they might develop these skills in pre-service teachers. One approach is to consider the processes and practices inherent in philosophical inquiry. This paper reports on three participants’ reflections of a 12-week philosophy programme that was conducted for teacher educators at Queensland’s University of Technology (QUT) in 2008. The programme was facilitated by teachers from Buranda State School who have been teaching philosophy in their P-7 school for more than ten years. This paper provides insight into teacher educators’ reflections on the philosophy programme and the associated changes and challenges of implementing such a programme in pre-service teacher education degrees.
Resumo:
Although the sciences were being taught in Australian schools well before the Second World War, the only evidence of research studies of this teaching is to be found in the report, published by ACER in 1932 of Roy Stanhope’s survey of the teaching of chemistry in New South Wales and a standardized test he had developed. Roy Stanhope was a science teacher with a research masters degree in chemistry. He had won a scholarship to go to Stanford University for doctoral studies, but returned after one year when his scholarship was not extended. He went on to be a founder in 1943 of the Australian Science Teachers Association (ASTA), which honours this remarkable pioneer through its annual Stanhope Oration. In his retirement Stanhope undertook a comparative study of science
Resumo:
In this chapter we review studies of the engagement of students in design projects that emphasise integration of technology practice and the enabling sciences, which include physics and mathematics. We give special attention to affective and conceptual outcomes from innovative interventions of design projects. This is important work because of growing international concern that demand for professionals with technological expertise is increasing rapidly, while the supply of students willing to undertake the rigors of study in the enabling sciences is proportionally reducing (e.g., Barringtion, 2006; Hannover & Kessels, 2004; Yurtseven, 2002). The net effect is that the shortage in qualified workers is having a detrimental effect upon economic and social potential in Westernised countries (e.g., Department of Education, Science and Training [DEST], 2003; National Numeracy Review Panel and National Numeracy Review Secretarial, 2007; Yurtseven, 2002). Interestingly, this trend is reversed in developing economies including China and India (Anderson & Gilbride, 2003).
Resumo:
The purpose of this study was to describe the teaching and leadership experiences of a science teacher who, as head of department, was preparing to introduce changes in the science department of an independent school in response to the requirements of the new junior science syllabus in Queensland, Australia. This teacher consented to classroom observations and interviews with the researchers where his beliefs about teaching practice and change were explored. Other science teachers at the school also were interviewed about their reactions to the planned changes. Interpretive analysis of the data provides an account of the complex interactions, negotiations, compromises, concessions, and trade-offs faced by the teacher during a period of education reform. Perceived barriers existing within the school that impeded proposed change are identified
Resumo:
In this chapter, a rationale is developed for incorporating philosophy into teacher training programs as a means of both preparing quality teachers for the 21st century and meeting the expectations detailed in the professional standards established by the statutory authority that regulates the profession in Queensland, the Queensland College of Teaching is presented. Furthermore, in-service teachers from Buranda State School, a Brisbane primary school that has been successfully teaching philosophy to its students for over 10 years, shares their experiences of teaching philosophy and how it has enhanced student learning and the quality of teaching and professionalism of the teachers. Finally, the implications of embedding philosophy into teacher training programs are explored in terms of developing the personal integrity of beginning teachers.
Resumo:
Adolescents are both aware of and have the impetuous to exploit aspects of Science, Technology, Engineering and Mathematics (STEM) within their personal lives. Whether they are surfing, cycling, skateboarding or shopping, STEM concepts impact their lives. However science, mathematics, engineering and technology are still treated in the classroom as separate fragmented entities in the educational environment where most classroom talk is seemingly incomprehensible to the adolescent senses. The aim of this study was to examine the experiences of young adolescents with the aim of transforming school learning at least of science into meaningful experiences that connected with their lives using a self-study approach. Over a 12-month period, the researcher, an experienced secondary-science teacher, designed, implemented and documented a range of pedagogical practices with his Year-7 secondary science class. Data for this case study included video recordings, journals, interviews and surveys of students. By setting an environment empathetic to adolescent needs and understandings, students were able to actively explore phenomena collaboratively through developmentally appropriate experiences. Providing a more contextually relevant environment fostered meta-cognitive practices, encouraged new learning through open dialogue, multi-modal representations and assessments that contributed to building upon, re-affirming, or challenging both the students' prior learning and the teacher’s pedagogical content knowledge. A significant outcome of this study was the transformative experiences of an insider, the teacher as researcher, whose reflections provided an authentic model for reforming pedagogy in STEM classes.
Resumo:
This chapter summarizes the responses to four questions in each of the chapters in this volume. The questions addressed the use of a conceptual framework that guides the chapter, issues of domain-generality, how personal epistemology relates to teaching, and how personal epistemologies change. We concluded that all of the chapters discussed the distinction between constructivist and transmission teaching practices, while suggesting that there are many inconsistencies in understanding the relationship between the nature of beliefs and teachers’ practices regardless of the relative sophistication of teachers’ personal epistemologies. We also summarized a multi-component instructional model for calibrating teaching practices based on suggestions in each of the chapters, and made four suggestions for future research, including the need for an integrated theory that accounts for the development and manifestations of personal pistemology in the classroom, the generalizability of fi ndings across different measurements, a set of guidelines to promote teacher epistemological change, and an explicit instructional model that explains the development and calibration of beliefs and practices. The goal of this volume was to examine the relationship between teachers’ personal epistemologies and teacher education. Sixteen different chapters addressed one or more aspects of this issue. Although each of the chapters addressed different aspects of teachers’ personal epistemologies, a number of common themes are apparent across the chapters. We believe it is useful to articulate these themes in greater detail to provide a better retrospective understanding of this volume, as well as a better prospective framework for future research and changes to teacher training programs. We divide this chapter into two main sections. The fi rst section addresses four key questions about the nature of teachers’ personal epistemologies that were discussed in the introductory chapter as part of a larger set of questions. These questions focus on how to conceptualize these beliefs as explicit models; whether beliefs are domain-specifi c or domain-general; how beliefs are related to teaching; and how beliefs change over time. We provide a summary of each chapter in terms of these four questions. The second section proposes four general suggestions for future research based on the studies reported within this volume.
Resumo:
Historical vignettes are interesting short stories which encapsulate a brief period of scientific history. They can be useful tools for teaching the nature of science, demonstrating the practices of science and making science fun. Historical vignettes illustrate the role of people and social processes in science. In this paper I describe my experience with writing and presenting an historical vignette during a Biology unit. Included is a copy of the vignette and I have identified some possible improvements that might lead to better outcomes. This may be helpful for other teachers who wish to try this strategy for themselves.
Resumo:
The advocacy for inquiry-based learning in contemporary curricula assumes the principle that students learn in their own way by drawing on direct experience fostered by the teacher. That students should be able to discover answers themselves through active engagement with new experiences was central to the thinking of eminent educators such as Pestalozzi, Dewey and Montessori. However, even after many years of research and practice, inquiry learning as a referent for teaching still struggles to find expression in the average teachers' pedagogy. This study drew on interview data from 20 elementary teachers. A phenomenographic analysis revealed three conceptions of teaching for inquiry learning in science in the elementary years of schooling: (a) The Experience- centred conception where teachers focused on providing interesting sensory experiences to students; (b) The Problem-centred conception where teachers focused on challenging students with engaging problems; and (c) The Question-centred conception where teachers focused on helping students to ask and answer their own questions. Understanding teachers' conceptions has implications for both the enactment of inquiry teaching in the classroom as well as the uptake of new teaching behaviours during professional development, with enhanced outcomes for engaging students in Science.
Resumo:
The high attrition rate of beginning teachers in Australia and overseas is well-documented. This trend is easily understood as many beginning teachers enter the profession with little support or mentoring (Department of Education, Science and Training (DEST), 2002; Herrington & Herrington, 2004; Ramsey, 2000). Continual calls for more comprehensive approaches to teacher induction in which universities and employing bodies share the responsibilities of the transition to professional practice (House of Representatives Standing Committee on Education and Vocational Training, 2007) have, to date, largely been ignored. This paper reports on a trial project conducted at a university in south-east Queensland, Australia that addresses these shortfalls. The aim of the project is to facilitate and support the development of high quality teachers and teaching through an extended model of teacher preparation. The model comprises a 1+2 program of formal teacher preparation: a one-year teacher education course (the Graduate Diploma in Education), followed by a comprehensive two year program of workplace induction and ongoing professional learning tailored to meet graduate and employer needs. This paper reports on graduating students’ perceptions of their preparedness to teach as they transition from the Graduate Diploma in Education program to professional practice. The study concludes that innovative programs, including university-linked, ongoing professional learning support for teacher education graduates, may provide the way forward for enhancing the transition to practice for beginning teachers.