968 resultados para Scanned electron microscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the first study of N+ -implanted silicon on insulator by energy-filtered imaging using an Opton electron microscope CEM 902 equipped Castaing-Henry electron optical system as a spectrometer. The inelastic images, energy window set at DELTA-E = 16 eV and DELTA-E = 25 eV according to plasmon energy loss of crystal Si and of silicon nitride respectively, give much structure information. The interface between the top silicon layer and the upper silicon nitride layer can be separated into two sublayers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure of silicon on defect layer, a new type of silicon-on-insulator material using proton implantation and two-step annealing to obtain a high resistivity buried layer beneath the silicon surface, has been investigated by transmission electron microscopy. Implantation induced a heavily damaged region containing two types of extended defects involving hydrogen: {001} platelets and {111} platelets. During the first step annealing, gas bubbles and {111} precipitates formed. After the second step annealing, {111} precipitates disappeared, while the bubble microstructure still remained and a buried layer consisting of bubbles and dislocations between the bubbles was left. This study shows that the dislocations pinning the bubbles plays an important role in stabilizing the bubbles and in the formation of the defect insulating layer. (C) 1996 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single chain single crystals (SCSC) of gutta percha (GP) were prepared by a dilute-solution spraying method. Electron diffraction (ED) patterns revealed that the single chain single crystal was of a new crystalline modification, the delta form. The images of SCSC of GP obtained with a high resolution electron microscope (HREM) showed a two dimensional periodic structure. Most of the images consisted of lattice fringes derived from the (001) zone. This is the first time that the single chain single crystal images of GP have been observed at a molecular level. Micrographs were image processed using optical filtering methods to improve the signal-to-noise ratio, and were compared with computer-generated simulations of the images. From the viewpoint of the defects seen in high resolution images, the crystal formation and melting processes are discussed. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper a general analytic expression has been obtained and confirmed by a computer simulation which links the surface roughness of an object under study in an emission electron microscope and it's resolution. A quantitative derivation was made for the model case when there is a step on the object surface. It was shown that the resolution is deteriorated asymmetrically relative to the step. The effect sets a practical limit to the ultimate lateral resolution obtainable in an emission electron microscope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under investigation by emission electron microscopy, the shape and size of three-dimensional objects are distorted because of the appearance of a characteristic potential relief and a possible contact potential difference between the particles and the substrate. An estimation of these effects for spherical particles is made. It is shown that the apparent size of particles observed in an emission electron microscope (EEM) could be increased as well as decreased depending on the relation between the work functions of the particle and the substrate. The corresponding formulae are given and several possibilities are shown which permit us to determine from the EEM image the real size of particles and their work function relative to the substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enteroendocrine cell is the cornerstone of gastrointestinal chemosensation. In the intestine and colon, this cell is stimulated by nutrients, tastants that elicit the perception of flavor, and bacterial by-products; and in response, the cell secretes hormones like cholecystokinin and peptide YY--both potent regulators of appetite. The development of transgenic mice with enteroendocrine cells expressing green fluorescent protein has allowed for the elucidation of the apical nutrient sensing mechanisms of the cell. However, the basal secretory aspects of the enteroendocrine cell remain largely unexplored, particularly because a complete account of the enteroendocrine cell ultrastructure does not exist. Today, the fine ultrastructure of a specific cell can be revealed in the third dimension thanks to the invention of serial block face scanning electron microscopy (SBEM). Here, we bridged confocal microscopy with SBEM to identify the enteroendocrine cell of the mouse and study its ultrastructure in the third dimension. The results demonstrated that 73.5% of the peptide-secreting vesicles in the enteroendocrine cell are contained within an axon-like basal process. We called this process a neuropod. This neuropod contains neurofilaments, which are typical structural proteins of axons. Surprisingly, the SBEM data also demonstrated that the enteroendocrine cell neuropod is escorted by enteric glia--the cells that nurture enteric neurons. We extended these structural findings into an in vitro intestinal organoid system, in which the addition of glial derived neurotrophic factors enhanced the development of neuropods in enteroendocrine cells. These findings open a new avenue of exploration in gastrointestinal chemosensation by unveiling an unforeseen physical relationship between enteric glia and enteroendocrine cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This memoir recalls the instruments in the Electron Microscope Unit and the staff, students and visitors who used them. Accessory equipment is also described because much of it was innovative and built in the laboratory, also, much of the science would not have been possible without it. This publication includes 33 figures, 4 plates and 7 appendices. The appendices record that 54 MBA staff and 196 students and visitors have used the microscopes and that 413 titles have been published (to the end of 2006).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrastructural investigations of eggs can be important in helping to understand embryonic development. There are few transmission electron microscope studies of marine arthropod eggs, however, as they have proved difficult to fix and infiltrate with resin. Here, we describe a modification of a standard method that allows the preparation of the quite different eggs of the marine copepod, Acartia tonsa and the lobster, Homarus gammarus, for transmission electron microscopy. By using double fixation and an extended resin infiltration time we obtained good preparations for electron microscopy. We anticipate that these modifications to the standard protocol will be widely applicable and useful for the study of the eggs and early developmental stages of many marine arthropod taxa. Les recherches sur l'ultrastructure des oeufs peuvent être importantes en aidant à comprendre le développement embryonnaire. Il existe cependant peu d'études en microscopie électronique à transmission sur les oeufs d'arthropodes marins, car il est difficile de les fixer et d'y infiltrer de la résine. Dans ce travail, nous décrivons une modification de la méthode standard, qui permet la préparation pour la microscopie électronique à transmission d'oeufs aussi différents que ceux du copépode marin Acartia tonsa et du homard Homarus gammarus. En utilisant une double fixation et un temps plus long d'infiltration de la résine, nous avons obtenu de bonnes préparations pour la microscopie électronique. Nous prévoyons que ces modifications du protocole standard seront largement applicables et utiles pour l'étude des oeufs et des premiers stades de développement de nombreux taxons d'arthropodes marins.