895 resultados para STRATEGIC ENVIRONMENTAL ASSESSMENT
Resumo:
O aumento da inundação em áreas do baixo curso do rio Taquari, no Pantanal do estado do Mato Grosso do Sul, tem transformado a pecuária desta região numa atividade com baixa rentabilidade, à medida que extensas áreas de campo passaram a ser inundadas vários meses durante o ano a partir da década de 70. A pecuária realizada em campos naturais de regiões úmidas do Pantanal indica que há necessidade de se investigar metodologias apropriadas para avaliação de impacto ambiental, que abordem impactos diretos, indiretos, cumulativos e processos do meio físico que alteram, de maneira prejudicial, o meio ambiente. Supõe-se que a inundação na planície do rio Taquari esteja relacionada com a ocupação antrópica nas áreas de planalto da bacia do rio Taquari. O presente trabalho tem por objetivo avaliar os impactos ambientais na planície de inundação do baixo curso do Taquari, decorrentes da ocupação antrópica da bacia hidrográfica do rio Taquari em sua totalidade, considerando os impactos ambientais causados pela pecuária à medida que se configura como principal atividade econômica da bacia bem como os processos erosivos e de assoreamento no quadro atual do regime de inundações. As etapas de caracterização da área, de análise dos impactos e as propostas de ações mitigadoras, previstas num Estudo de Impacto Ambiental, foram aqui analisadas. Foram utilizadas informações sobre as características do meio físico, biótico e socioeconômico, selecionadas a partir do levantamento dos dados existentes com recorte efetuado para a bacia hidrográfica do rio Taquari. Na maior parte dos temas, este foi um processo de levantamento, ordenamento e recuperação de informações, na escala original de 1:250.000, do Plano de Conservação da Bacia do Alto Paraguai-PCBAP, gerenciado no SPRING. Foram também realizadas viagens de campo para a complementação dos dados e para o levantamento de atividades antrópicas com verificações \"in loco\" da ocorrência de impacto ambiental. A maioria dos dados socioeconômicos compilados para o presente trabalho teve por base os censos agropecuários e demográficos realizados pelo IBGE. Os resultados obtidos demonstram que os impactos ambientais decorrentes da pecuária no planalto interferem no regime de inundação na planície da bacia, o que só foi possível de ser identificado a partir de análises integradas em toda a bacia hidrográfica do rio Taquari. Verificou-se que os métodos de EIA são adequados para identificar os impactos diretos decorrentes da pecuária, mas não são adequados para identificar os processos e seus efeitos cumulativos na extensão da bacia hidrográfica do rio Taquari. Além disto, a abordagem da avaliação ambiental estratégica, como procedimento para análise ambiental em políticas, planos e programas, mostra-se adequada para as análises na BHRT à medida que está centralizada nos efeitos do ambiente sobre as necessidades e oportunidades de desenvolvimento. Contudo, somente a recuperação de danos ambientais, o controle das origens dos impactos no ambiente e um sistema de gestão consciente de seus compromissos podem levar, juntamente com a melhora dos procedimentos técnicos e administrativos para análises ambientais, à uma maior proximidade da sustentabilidade ambiental na BHRT.
Resumo:
How does knowledge management (KM) by a government agency responsible for environmental impact assessment (EIA) potentially contribute to better environmental assessment and management practice? Staff members at government agencies in charge of the EIA process are knowledge workers who perform judgement-oriented tasks highly reliant on individual expertise, but also grounded on the agency`s knowledge accumulated over the years. Part of an agency`s knowledge can be codified and stored in an organizational memory, but is subject to decay or loss if not properly managed. The EIA agency operating in Western Australia was used as a case study. Its KM initiatives were reviewed, knowledge repositories were identified and staff surveyed to gauge the utilisation and effectiveness of such repositories in enabling them to perform EIA tasks. Key elements of KM are the preparation of substantive guidance and spatial information management. It was found that treatment of cumulative impacts on the environment is very limited and information derived from project follow-up is not properly captured and stored, thus not used to create new knowledge and to improve practice and effectiveness. Other opportunities for improving organizational learning include the use of after-action reviews. The learning about knowledge management in EIA practice gained from Western Australian experience should be of value to agencies worldwide seeking to understand where best to direct their resources for their own knowledge repositories and environmental management practice. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
PRINCIPLES To evaluate the validity and feasibility of a novel photography-based home assessment (PhoHA) protocol, as a possible substitute for on-site home assessment (OsHA). METHODS A total of 20 patients aged ≥65 years who were hospitalised in a rehabilitation centre for musculoskeletal disorders affecting mobility participated in this prospective validation study. For PhoHA, occupational therapists rated photographs and measurements of patients' homes provided by patients' confidants. For OsHA, occupational therapists conducted a conventional home visit. RESULTS Information obtained by PhoHA was 79.1% complete (1,120 environmental factors identified by PhoHA vs 1416 by OsHA). Of the 1,120 factors, 749 had dichotomous (potential hazards) and 371 continuous scores (measurements with tape measure). Validity of PhoHA to potential hazards was good (sensitivity 78.9%, specificity 84.9%), except for two subdomains (pathways, slippery surfaces). Pearson's correlation coefficient for the validity of measurements was 0.87 (95% confidence interval [CI 0.80-0.92, p <0.001). Agreement between methods was 0.52 (95%CI 0.34-0.67, p <0.001, Cohen's kappa coefficient) for dichotomous and 0.86 (95%CI 0.79-0.91, p <0.001, intraclass correlation coefficient) for continuous scores. Costs of PhoHA were 53.0% lower than those of OsHA (p <0.001). CONCLUSIONS PhoHA has good concurrent validity for environmental assessment if instructions for confidants are improved. PhoHA is potentially a cost-effective method for environmental assessment.
Resumo:
"EPA/600/8-90/041."
Resumo:
The Iowa Department of Transportation (IDOT) is currently considering improvements for US Highway 65 (US-65) and Iowa State Highway 330 (IA-330) in Polk and Jasper Counties, Iowa. As part of its project planning effort, IDOT is preparing an Environmental Assessment (EA) report which will include a section entitled "Hazardous Waste" to identify known sites in or near the proposed corridors that are, or could be, contaminated with hazardous or petroleum substances.
Resumo:
Coastal wetlands are dynamic and include the freshwater-intertidal interface. In many parts of the world such wetlands are under pressure from increasing human populations and from predicted sea-level rise. Their complexity and the limited knowledge of processes operating in these systems combine to make them a management challenge.Adaptive management is advocated for complex ecosystem management (Hackney 2000; Meretsky et al. 2000; Thom 2000;National Research Council 2003).Adaptive management identifies management aims,makes an inventory/environmental assessment,plans management actions, implements these, assesses outcomes, and provides feedback to iterate the process (Holling 1978;Walters and Holling 1990). This allows for a dynamic management system that is responsive to change. In the area of wetland management recent adaptive approaches are exemplified by Natuhara et al. (2004) for wild bird management, Bunch and Dudycha (2004) for a river system, Thom (2000) for restoration, and Quinn and Hanna (2003) for seasonal wetlands in California. There are many wetland habitats for which we currently have only rudimentary knowledge (Hackney 2000), emphasizing the need for good information as a prerequisite for effective management. The management framework must also provide a way to incorporate the best available science into management decisions and to use management outcomes as opportunities to improve scientific understanding and provide feedback to the decision system. Figure 9.1 shows a model developed by Anorov (2004) based on the process-response model of Maltby et al. (1994) that forms a framework for the science that underlies an adaptive management system in the wetland context.
Resumo:
Reuse of tire crumb in sport facilities is currently a very cost-effective waste management measure. Considering that incorporation of the waste materials in artificial turf would be facilitated if the rubber materials were already colored green, coatings were specifically developed for this purpose. This paper presents an experimental toxicological and environmental assessment aimed at comparing the obtained emissions to the environment in terms of polycyclic aromatic hydrocarbons (PAHs), heavy metals, and ecotoxicity for coated and noncoated rubber granulates. This study is a comprehensive evaluation of the major potential critical factors related with the release of all of these classes of pollutants because previous studies were not systematically performed. It was concluded that between the two types of coatings tested, one is particularly effective in reducing emissions to the environment, simultaneously meeting the requirements of adherence and color stability.
Resumo:
Reuse of tire crumb in sport facilities is currently a very cost-effective waste management measure. Considering that incorporation of the waste materials in artificial turf would be facilitated if the rubber materials were already colored green, coatings were specifically developed for this purpose. This paper presents an experimental toxicological and environmental assessment aimed at comparing the obtained emissions to the environment in terms of polycyclic aromatic hydrocarbons (PAHs), heavy metals, and ecotoxicity for coated and noncoated rubber granulates. This study is a comprehensive evaluation of the major potential critical factors related with the release of all of these classes of pollutants because previous studies were not systematically performed. It was concluded that between the two types of coatings tested, one is particularly effective in reducing emissions to the environment, simultaneously meeting the requirements of adherence and color stability.
Resumo:
The Transportation Equity Act of the 21st Century (TEA-21) (23 CFR) mandated environmental streamlining in order to improve transportation project delivery without compromising environmental protection. In accordance with TEA-21, the environmental review process for this project has been documented as a Streamlined Environmental Assessment (EA). This document addresses only those resources or features that apply to the project. This allowed study and discussion of resources present in the study area, rather than expend effort on resources that were either not present or not impacted. Although not all resources are discussed in the EA, they were considered during the planning process and are documented in the Streamlined Resource Summary, shown in Appendix A. The following table shows the resources considered during the environmental review for this project. The first column with a check means the resource is present in the project area. The second column with a check means the impact to the resource warrants more discussion in this document. The other listed resources have been reviewed and are included in the Streamlined Resource Summary.
Resumo:
The objective of the dissertation is to increase understanding and knowledge in the field where group decision support system (GDSS) and technology selection research overlap in the strategic sense. The purpose is to develop pragmatic, unique and competent management practices and processes for strategic technology assessment and selection from the whole company's point of view. The combination of the GDSS and technology selection is approached from the points of view of the core competence concept, the lead user -method, and different technology types. In this research the aim is to find out how the GDSS contributes to the technology selection process, what aspects should be considered when selecting technologies to be developed or acquired, and what advantages and restrictions the GDSS has in the selection processes. These research objectives are discussed on the basis of experiences and findings in real life selection meetings. The research has been mainly carried outwith constructive, case study research methods. The study contributes novel ideas to the present knowledge and prior literature on the GDSS and technology selection arena. Academic and pragmatic research has been conducted in four areas: 1) the potential benefits of the group support system with the lead user -method,where the need assessment process is positioned as information gathering for the selection of wireless technology development projects; 2) integrated technology selection and core competencies management processes both in theory and in practice; 3) potential benefits of the group decision support system in the technology selection processes of different technology types; and 4) linkages between technology selection and R&D project selection in innovative product development networks. New type of knowledge and understanding has been created on the practical utilization of the GDSS in technology selection decisions. The study demonstrates that technology selection requires close cooperation between differentdepartments, functions, and strategic business units in order to gather the best knowledge for the decision making. The GDSS is proved to be an effective way to promote communication and co-operation between the selectors. The constructs developed in this study have been tested in many industry fields, for example in information and communication, forest, telecommunication, metal, software, and miscellaneous industries, as well as in non-profit organizations. The pragmatic results in these organizations are some of the most relevant proofs that confirm the scientific contribution of the study, according to the principles of the constructive research approach.
Resumo:
The structural change of society from product-based business to service- and further to need-based business has caused the fact that work for environmental issues has spread from conventional factories and environmentally harmful production to concern services and offices as well. Almost every company has an office, so a relatively small environmental burden caused by an individual office grows remarkable already at the state level and globally even more. Motivation to work for environmental issues in an individual office could be challenging even without the fact that wasted environmental impacts bound also wasted costs. Besides cost savings, a concretely greener image of a company has its value in the B2Cas well as in the B2B-field. Consumers and clients are more and more conscious of environmental issues and demand concrete actions instead of speeches, good thoughts and meaningless certifications. Internal work for environmental issues at a strategy level is not sufficient, so operational environmental management is needed for changing old practices. This research is about the effects of operative environmental management on the greening process of an office-based business. The research is outlined to concern the operative work in the office including field sales. Target was to concretely lower the environmental impacts of Lyreco Finland and to find cost savings directly by changing the operative practices in the office and also indirectly by affecting the level of environmental knowledge of the personnel. During the greening process, the aim was also to create concrete arguments for marketing as well. The circle of greening process, which was especially created for this diploma work, was used as a method. The circle divides a year to themes and sections separated by factors of environmental impacts. Separation is based on Brett Wills’ thoughts of seven green wastes (Wills, Brett. The Green Intensions. 2009) and follows it uneasily. The circle aimed at ensuring evolutionary growth of knowledge instead of being revolutionary in the changing process. Committing personnel to the process from its start by asking ideas from them and giving them clear directions was an important part of the research of operative management. Because of working from distance, communication with personnel was operated by frequent training days and weekly greening notes via emails and intranet. Also availability for communication was an important task because of the telecommuting. Research results of this work show that operative environmental management in an officebased business today is mostly management of change. When the strategic environmental friendliness is taken into a concrete level, the most important individual factor is motivating the operating personnel. Research shows that evolutionary change is found being an efficient way to make a change. Also understanding one´s own impact on the environmental burden and on the whole greening process clearly motivates the personnel. Results show that in the operative realization of the greening process, clear directions of new working practices, being as concrete as possible, and committing personnel to follow them make the process more effective. The operative environmental management and the cycle of the greening process decrease the environmental burden and save costs. The concrete results could be used as believable arguments in marketing and therefore exploited in communication with interest groups. Commitment of the management is also one of the key factors of success in the greening process. In this research, changes in the business field by a company trade took the focus of the management away from the greening process and made the process more inefficient by decreasing the amount of training days. The circle of greening process will be used as a tool in the future, as well, and therefore it will help observe environmental impacts of a company and increase sustainable development. Commitment of management to the evolutionary environmental work helps the operating personnel lower environmental impacts, decrease costs and build a concretely greener image.
Resumo:
The purpose of the thesis is to give an overview of the cleantech sector and to give an answer how cleantech companies can evaluate the environmental sustainability of their business by utilizing various indicators and measures. The thesis is a literature study and it is based on a secondary data. Thesis presents the definitions to cleantech as well as its history and the main industries. Cleantech market overview in Finland and worldwide is also introduced. Furthermore, various indicators are presented in order to evaluate the environmental sustainability of companies' business. In the end, indicators used in cleantech sector are evaluated. As a result, the thesis presents the following methodologies that can be used in evaluating the environmental sustainability in the cleantech sector: Sustainability assessment framework, Environmental value analysis, COMPLIMENT - Environmental performance index for industries and Environmental assessment for cleaner production. More tools are still needed to evaluate environmental sustainability in the cleantech sector.
Resumo:
This report introduces the ENPI project called “EMIR - Exploitation of Municipal and Industrial Residues” which was executed in a co-operation between Lappeenranta University of Technology (LUT), Saint Petersburg State University of Economics (SPbSUE), Saint Petersburg State Technical University of Plant Polymers (SPbSTUPP) and industrial partners from both Leningrad Region (LR), Russia and Finland. The main targets of the research were to identify the possibilities for deinking sludge management scenarios in co-operation with partner companies, to compare the sustainability of the alternatives, and to provide recommendations for the companies in the Leningrad Region on how to best manage deinking sludge. During the literature review, 24 deinking sludge utilization possibilities were identified, the majority falling under material recovery. Furthermore, 11 potential utilizers of deinking sludge were found within the search area determined by the transportation cost. Each potential utilizer was directly contacted in order to establish cooperation for deinking sludge utilization. Finally, four companies, namely, “Finnsementti” – a cement plant in Finland (S1), “St.Gobian Weber” – a light-weight aggregate plant in Finland (S2), “LSR-Cement” – a cement plant in LR (S3), and “Rockwool” – a stone wool plant in LR (S4) were seen as the most promising partners and were included in the economic and environmental assessments. Economic assessment using cost-benefit analysis (CBA) indicated that substitution of heavy fuel oil with dry deinking sludge in S2 was the most feasible option with a benefit/cost ratio (BCR) of 3.6 when all the sludge was utilized. At the same time, the use of 15% of the total sludge amount (the amount that could potentially be treated in the scenario) resulted in a BCR of only 0.16. The use of dry deinking sludge in the production of cement (S3) is a slightly more feasible option with a BCR of 1.1. The use of sludge in stone wool production is feasible only when all the deinking sludge is used and burned in an existing incineration plant. The least economically feasible utilization possibility is the use of sludge in cement production in Finland (S1) due to the high gate fee charged. Environmental assessment was performed applying internationally recognized life cycle assessment (LCA) methodologies: ISO 14040 and ISO 14044. The results of a consequential LCA stated that only S1 and S2 lead to a reduction of all environmental impacts within the impact categories chosen compared to the baseline scenario where deinking sludge is landfilled. Considering S1, the largest reduction of 13% was achieved for the global warming potential (GWP), whereas for S2, the largest decrease of abiotic depletion potential (ADP) was by 1.7%, the eutrophication potential (EP) by 1.8%, and a GWP of 2.1% was documented. In S3, the most notable increase of ADP and acidification potential (AP) by 2.6 and 1.5% was indicated, while the GWP was reduced by 12%, the largest out of all the impact categories. In S4, ADP and AP increased by 2.3 and 2.1% respectively, whereas ODP was reduced by 25%. During LCA, it was noticed that substitution of fuels causes a greater reduction of environmental impact (S1 and S2) than substitution of raw materials (S3 and S4). Despite a number of economically and environmentally acceptable deinking sludge utilization methods being assessed in the research, evaluation of bottlenecks and communications with companies’ representatives uncovered the fact that the availability of the raw materials consumed, and the risks associated with technological problems resulting from the sludge utilization, limited the willingness of industrial partners to start deinking sludge utilization. The research results are of high value for decision-makers at already existing paper mills since the result provide insights regarding alternatives to the deinking sludge utilization possibilities already applied. Thus, the research results support the maximum economic and environmental value recovery from waste paper utilization.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.