970 resultados para RAPID IDENTIFICATION
Resumo:
The term oxylipin is applied to the generation of oxygenated products of polyunsaturated fatty acids that can arise either through non-enzymatic or enzymatic processes generating a complex array of products, including alcohols, aldehydes, ketones, acids and hydrocarbon gases. The biosynthetic origin of these products has revealed an array of enzymes involved in their formation and more recently a radical pathway. These include lipoxygenases and α-dioxygenase that insert both oxygen atoms in to the acyl chain to initiate the pathways, to specialised P450 monooxygenases that are responsible for their downstream processing. This latter group include enzymes at the branch points such as allene oxide synthase, leading to jasmonate signalling, hydroperoxide lyase, responsible for generating pathogen/pest defensive volatiles and divinyl ether synthases and peroxygenases involved in the formation of antimicrobial compounds. The complexity of the products generated raises significant challenges for their rapid identification and quantification using metabolic screening methods. Here the current developments in oxylipin metabolism are reviewed together with the emerging technologies required to expand this important field of research that underpins advances in plant-pest/pathogen interactions.
Resumo:
Biological detectors, such as canines, are valuable tools used for the rapid identification of illicit materials. However, recent increased scrutiny over the reliability, field accuracy, and the capabilities of each detection canine is currently being evaluated in the legal system. For example, the Supreme Court case, State of Florida v. Harris, discussed the need for continuous monitoring of canine abilities, thresholds, and search capabilities. As a result, the fallibility of canines for detection was brought to light, as well as a need for further research and understanding of canine detection. This study is two-fold, as it looks to not only create new training aids for canines that can be manipulated for dissipation control, but also investigates canine field accuracy to objects with similar odors to illicit materials. It was the goal of this research to improve upon current canine training aid mimics. Sol-gel polymer training aids, imprinted with the active odor of cocaine, were developed. This novel training aid improved upon the longevity of currently existing training aids, while also provided a way to manipulate the polymer network to alter the dissipation rate of the imprinted active odors. The manipulation of the polymer network could allow handlers to control the abundance of odors presented to their canines, familiarizing themselves to their canine’s capabilities and thresholds, thereby increasing the canines’ strength in court. The field accuracy of detection canines was recently called into question during the Supreme Court case, State of Florida v. Jardines, where it was argued that if cocaine’s active odor, methyl benzoate, was found to be produced by the popular landscaping flower, snapdragons, canines will false alert to said flowers. Therefore, snapdragon flowers were grown and tested both in the laboratory and in the field to determine the odors produced by snapdragon flowers; the persistence of these odors once flowers have been cut; and whether detection canines will alert to both growing and cut flowers during a blind search scenario. Results revealed that although methyl benzoate is produced by snapdragon flowers, certified narcotics detection canines can distinguish cocaine’s odor profile from that of snapdragon flowers and will not alert.
Resumo:
Background: Sepsis can lead to multiple organ failure and death. Timely and appropriate treatment can reduce in-hospital mortality and morbidity. Objectives: To determine the clinical effectiveness and cost-effectiveness of three tests [LightCycler SeptiFast Test MGRADE® (Roche Diagnostics, Risch-Rotkreuz, Switzerland); SepsiTest™ (Molzym Molecular Diagnostics, Bremen, Germany); and the IRIDICA BAC BSI assay (Abbott Diagnostics, Lake Forest, IL, USA)] for the rapid identification of bloodstream bacteria and fungi in patients with suspected sepsis compared with standard practice (blood culture with or without matrix-absorbed laser desorption/ionisation time-offlight mass spectrometry). Data sources: Thirteen electronic databases (including MEDLINE, EMBASE and The Cochrane Library) were searched from January 2006 to May 2015 and supplemented by hand-searching relevant articles. Review methods: A systematic review and meta-analysis of effectiveness studies were conducted. A review of published economic analyses was undertaken and a de novo health economic model was constructed. A decision tree was used to estimate the costs and quality-adjusted life-years (QALYs) associated with each test; all other parameters were estimated from published sources. The model was populated with evidence from the systematic review or individual studies, if this was considered more appropriate (base case 1). In a secondary analysis, estimates (based on experience and opinion) from seven clinicians regarding the benefits of earlier test results were sought (base case 2). A NHS and Personal Social Services perspective was taken, and costs and benefits were discounted at 3.5% per annum. Scenario analyses were used to assess uncertainty. Results: For the review of diagnostic test accuracy, 62 studies of varying methodological quality were included. A meta-analysis of 54 studies comparing SeptiFast with blood culture found that SeptiFast had an estimated summary specificity of 0.86 [95% credible interval (CrI) 0.84 to 0.89] and sensitivity of 0.65 (95% CrI 0.60 to 0.71). Four studies comparing SepsiTest with blood culture found that SepsiTest had an estimated summary specificity of 0.86 (95% CrI 0.78 to 0.92) and sensitivity of 0.48 (95% CrI 0.21 to 0.74), and four studies comparing IRIDICA with blood culture found that IRIDICA had an estimated summary specificity of 0.84 (95% CrI 0.71 to 0.92) and sensitivity of 0.81 (95% CrI 0.69 to 0.90). Owing to the deficiencies in study quality for all interventions, diagnostic accuracy data should be treated with caution. No randomised clinical trial evidence was identified that indicated that any of the tests significantly improved key patient outcomes, such as mortality or duration in an intensive care unit or hospital. Base case 1 estimated that none of the three tests provided a benefit to patients compared with standard practice and thus all tests were dominated. In contrast, in base case 2 it was estimated that all cost per QALY-gained values were below £20,000; the IRIDICA BAC BSI assay had the highest estimated incremental net benefit, but results from base case 2 should be treated with caution as these are not evidence based. Limitations: Robust data to accurately assess the clinical effectiveness and cost-effectiveness of the interventions are currently unavailable. Conclusions: The clinical effectiveness and cost-effectiveness of the interventions cannot be reliably determined with the current evidence base. Appropriate studies, which allow information from the tests to be implemented in clinical practice, are required.
Resumo:
Background: The emergence of Enterobacteriaceae harboring IMP-4 or IMP-8 carbapenemases is rare. We report an occurrence of Enterobacteriaceae harboring IMP-4 or IMP-8 carbapenemases in a Chinese tertiary care hospital from November 2010 to December 2012. Methods: The clinical characteristics of 30 patients were described. The genetic relationship of isolates was determined by pulsed-field gel electrophoresis (PFGE). Carbapenemases were detected by modified Hodge test (MHT) and polymerase chain reactions (PCRs). Amplicons were sequenced and blasted to determine the genotype. Results: Most infected patients were from intensive care unit and had complex and serious underlying illnesses requiring mechanical ventilation. PFGE revealed that Klebsiella pneumoniae showed two major PFGE types. Two Klebsiella oxytoca had an indistinguishable PFGE pattern, while four Enterobacter cloacae were different strains. The sequencing studies showed Enterobacteriaceae harboring IMP-4 or IMP-8 carbapenemase in the 23 infected patients. The majority of patients had infections with the carbapenemase-producing Enterobacteriaceae (CPE) strain, most were successfully treated with a range of antibiotics and discharged. Conclusion: It is important to maintain a high index of suspicion to screen for carbapenemase-producing Enterobacteriaceae strains. Rapid identification of these strains and implementation of stringent procedures are the key to prevent major outbreaks in a hospital setting. Keywords:
Resumo:
Biological detectors, such as canines, are valuable tools used for the rapid identification of illicit materials. However, recent increased scrutiny over the reliability, field accuracy, and the capabilities of each detection canine is currently being evaluated in the legal system. For example, the Supreme Court case, State of Florida v. Harris, discussed the need for continuous monitoring of canine abilities, thresholds, and search capabilities. As a result, the fallibility of canines for detection was brought to light, as well as a need for further research and understanding of canine detection. This study is two-fold, as it looks to not only create new training aids for canines that can be manipulated for dissipation control, but also investigates canine field accuracy to objects with similar odors to illicit materials. ^ It was the goal of this research to improve upon current canine training aid mimics. Sol-gel polymer training aids, imprinted with the active odor of cocaine, were developed. This novel training aid improved upon the longevity of currently existing training aids, while also provided a way to manipulate the polymer network to alter the dissipation rate of the imprinted active odors. The manipulation of the polymer network could allow handlers to control the abundance of odors presented to their canines, familiarizing themselves to their canine’s capabilities and thresholds, thereby increasing the canines’ strength in court.^ The field accuracy of detection canines was recently called into question during the Supreme Court case, State of Florida v. Jardines, where it was argued that if cocaine’s active odor, methyl benzoate, was found to be produced by the popular landscaping flower, snapdragons, canines will false alert to said flowers. Therefore, snapdragon flowers were grown and tested both in the laboratory and in the field to determine the odors produced by snapdragon flowers; the persistence of these odors once flowers have been cut; and whether detection canines will alert to both growing and cut flowers during a blind search scenario. Results revealed that although methyl benzoate is produced by snapdragon flowers, certified narcotics detection canines can distinguish cocaine’s odor profile from that of snapdragon flowers and will not alert.^
Resumo:
BACKGROUND Most European birds of prey find themselves in a poor state of conservation, with electrocution as one of the most frequent causes of unnatural death. Since early detection of electrocution is difficult, treatment is usually implemented late, which reduces its effectiveness. By considering that electrocution reduces tissue temperature, it may be detectable by thermography, which would allow a more rapid identification. Three individuals from three endangered raptor species [Spanish imperial eagle (Aquila adalberti), Lammergeier (Gypaetus barbatus) and Osprey (Pandion haliaetus)] were studied thermographically from the time they were admitted to a rehabilitation centre to the time their clinical cases were resolved. CASES PRESENTATION The three raptors presented lesions lacking thermal bilateral symmetry and were consistent with electrocution of feet, wings and eyes, visible by thermography before than clinically; lesions were well-defined and showed a lower temperature than the surrounding tissue. Some lesions evolved thermally and clinically until the appearance of normal tissue recovered, while others evolved and became necrotic. A histopathological analysis of a damaged finger amputated off a Lammergeier, and the necropsy and histopathology examination of an osprey, confirmed the electrocution diagnosis. CONCLUSIONS These results suggest that thermography is effective and useful for the objective and early detection and monitoring of electrocuted birds, and that it may prove especially useful for examining live animals that require no amputation or cannot be subjected to invasive histopathology.
Resumo:
La tuberculosis TB es una de las principales causas de muerte en el mundo en individuos con infección por VIH. En Colombia esta coinfección soporta una carga importante en la población general convirtiéndose en un problema de salud pública. En estos pacientes las pruebas diagnósticas tienen sensibilidad inferior y la enfermedad evoluciona con mayor frecuencia hacia formas diseminadas y rápidamente progresivas y su diagnóstico oportuno representa un reto en Salud. El objetivo de este proyecto es evaluar el desempeño de las pruebas diagnósticas convencionales y moleculares, para la detección de TB latente y activa pacientes con VIH, en dos hospitales públicos de Bogotá. Para TB latente se evaluó la concordancia entre las pruebas QuantiFERON-TB (QTF) y Tuberculina (PPD), sugiriendo superioridad del QTF sobre la PPD. Se evaluaron tres pruebas diagnósticas por su sensibilidad y especificidad, baciloscopia (BK), GenoType®MTBDR plus (Genotype) y PCR IS6110 teniendo como estándar de oro el cultivo. Los resultados de sensibilidad (S) y especificidad (E) de cada prueba con una prevalencia del 19,4 % de TB pulmonar y extrapulmonar en los pacientes que participaron del estudio fue: BK S: 64% E: 99,1%; Genotype S: 77,8% E: 94,5%; PCRIS6110 S: 73% E: 95,5%, de la misma forma se determinaron los valores predictivos positivos y negativos (VPP y VPN) BK: 88,9% y 94,8%, Genotype S: 77,8% E: 94,5%; PCRIS6110 S: 90% y 95,7%. Se concluyó bajo análisis de curva ROC que las pruebas muestran un rendimiento diagnóstico similar por separado en el diagnóstico de TB en pacientes con VIH, aumentando su rendimiento diagnostico cuando se combinan
Resumo:
Introducción: La rápida detección e identificación bacteriana es fundamental para el manejo de los pacientes críticos que presentan una patología infecciosa, esto requiere de métodos rápidos para el inicio de un correcto tratamiento. En Colombia se usan pruebas microbiología convencional. No hay estudios de espectrofotometría de masas en análisis de muestras de pacientes críticos en Colombia. Objetivo general: Describir la experiencia del análisis microbiológico mediante la tecnología MALDI-TOF MS en muestras tomadas en la Fundación Santa Fe de Bogotá. Materiales y Métodos: Entre junio y julio de 2013, se analizaron 147 aislamientos bacterianos de muestras clínicas, las cuales fueron procesadas previamente por medio del sistema VITEK II. Los aislamientos correspondieron a 88 hemocultivos (60%), 28 urocultivos (19%), y otros cultivos 31 (21%). Resultados: Se obtuvieron 147 aislamientos con identificación adecuada a nivel de género y/o especie así: en el 88.4% (130 muestras) a nivel de género y especie, con una concordancia del 100% comparado con el sistema VITEK II. El porcentaje de identificación fue de 66% en el grupo de bacilos gram negativos no fermentadores, 96% en enterobacterias, 100% en gérmenes fastidiosos, 92% en cocos gram positivos, 100% bacilos gram negativos móviles y 100% en levaduras. No se encontró ninguna concordancia en bacilos gram positivos y gérmenes del genero Aggregatibacter. Conclusiones: El MALDI-TOF es una prueba rápida para la identificación microbiológica de género y especie que concuerda con los resultados obtenidos de manera convencional. Faltan estudios para hacer del MALDI-TOF MS la prueba oro en identificación de gérmenes.
Resumo:
Acoustic sensing is a promising approach to scaling faunal biodiversity monitoring. Scaling the analysis of audio collected by acoustic sensors is a big data problem. Standard approaches for dealing with big acoustic data include automated recognition and crowd based analysis. Automatic methods are fast at processing but hard to rigorously design, whilst manual methods are accurate but slow at processing. In particular, manual methods of acoustic data analysis are constrained by a 1:1 time relationship between the data and its analysts. This constraint is the inherent need to listen to the audio data. This paper demonstrates how the efficiency of crowd sourced sound analysis can be increased by an order of magnitude through the visual inspection of audio visualized as spectrograms. Experimental data suggests that an analysis speedup of 12× is obtainable for suitable types of acoustic analysis, given that only spectrograms are shown.
Resumo:
Declining fossil fuels reserves, a need for increased energy security and concerns over carbon emissions from fossil fuel use are the global drivers for alternative, renewable, biosources of fuels and chemicals. In the present study the identification of long chain (C29–C33) saturated hydrocarbons from Nicotiana glauca leaves is reported. The occurrence of these hydrocarbons was detected by gas chromatography–mass spectrometry (GC–MS) and identification confirmed by comparison of physico-chemical properties displayed by the authentic standards available. A simple, robust procedure was developed to enable the generation of an extract containing a high percentage of hydrocarbons (6.3% by weight of dried leaf material) higher than previous reports in other higher plant species consequently, it is concluded that N. glauca could be a crop of greater importance than previously recognised for biofuel production. The plant can be grown on marginal lands, negating the need to compete with food crops or farmland, and the hydrocarbon extract can be produced in a non-invasive manner, leaving remaining biomass intact for bioethanol production and the generation of valuable co-products.
Resumo:
Rapid diagnostic tests (RDTs) represent important tools to diagnose malaria infection. To improve understanding of the variable performance of RDTs that detect the major target in Plasmodium falciparum, namely, histidine-rich protein 2 (HRP2), and to inform the design of better tests, we undertook detailed mapping of the epitopes recognized by eight HRP-specific monoclonal antibodies (MAbs). To investigate the geographic skewing of this polymorphic protein, we analyzed the distribution of these epitopes in parasites from geographically diverse areas. To identify an ideal amino acid motif for a MAb to target in HRP2 and in the related protein HRP3, we used a purpose-designed script to perform bioinformatic analysis of 448 distinct gene sequences from pfhrp2 and from 99 sequences from the closely related gene pfhrp3. The frequency and distribution of these motifs were also compared to the MAb epitopes. Heat stability testing of MAbs immobilized on nitrocellulose membranes was also performed. Results of these experiments enabled the identification of MAbs with the most desirable characteristics for inclusion in RDTs, including copy number and coverage of target epitopes, geographic skewing, heat stability, and match with the most abundant amino acid motifs identified. This study therefore informs the selection of MAbs to include in malaria RDTs as well as in the generation of improved MAbs that should improve the performance of HRP-detecting malaria RDTs.
Resumo:
Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/.
Resumo:
Representational Difference Analysis (RDA) is an established technique used for isolation of specific genetic differences between or within bacterial species. This method was used to investigate the genetic basis of serovar-specificity and the relationship between serovar and virulence in Haemophilus parasuis. An RDA clone library of 96 isolates was constructed using H. parasuis strains H425(P) (serovar 12) and HS1967 (serovar 4). To screen such a large clone library to determine which clones are strain-specific would typically involved separately labelling each clone for use in Southern hybridisation against genomic DNA from each of the strains. In this study, a novel application of reverse Southern hybridisation was used to screen the RDA library: genomic DNA from each strain was labelled and used to probe the library to identify strain-specific clones. This novel approach represents a significant improvement in methodology that is rapid and efficient.
Resumo:
A 300-strong Angus-Brahman cattle herd near Springsure, central Queensland, was being fed Acacia shirleyi (lancewood) browse during drought and crossed a 5-hectare, previously burnt area with an almost pure growth of Dysphania glomulifera subspecies glomulifera (red crumbweed) on their way to drinking water. Forty cows died of cyanide poisoning over 2 days before further access to the plant was prevented. A digital image of a plant specimen made on a flat-bed scanner and transmitted by email was used to identify D glomulifera. Specific advice on the plant's poisonous properties and management of the case was then provided by email within 2 hours of an initial telephone call by the field veterinarian to the laboratory some 600 km away. The conventional method using physical transport of a pressed dried plant specimen to confirm the identification took 5 days. D glomulifera was identified in the rumen of one of two cows necropsied. The cyanogenic potential of D glomulifera measured 4 days after collection from the site of cattle deaths was 18,600 mg HCN/kg in dry matter. The lethal dose of D glomulifera for a 420 kg cow was estimated as 150 to 190 g wet weight. The plant also contained 4.8% KNO3 equivalent in dry matter, but nitrate-nitrite poisoning was not involved in the deaths.
Resumo:
A monolithic enzymatic microreactor was prepared in a fused-silica capillary by in situ polymerization of acrylamide, glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA) in the presence of a binary porogenic mixture of dodecanol and cyclohexanol, followed by ammonia solution treatment, glutaraldehyde activation and trypsin modification. The choice of acrylamide as co-monomer was found useful to improve the efficiency of trypsin modification, thus, to increase the enzyme activity. The optimized microreactor offered very low back pressure, enabling the fast digestion of proteins flowing through the reactor. The performance of the monolithic microreactor was demonstrated with the digestion of cytochrome c at high flow rate. The digests were then characterized by CE and HPLC-MS/MS with the sequence coverage of 57.7%. The digestion efficiency was found over 230 times as high as that of the conventional method. in addition, for the first time, protein digestion carried out in a mixture of water and ACN was compared with the conventional aqueous reaction using MS/MS detection, and the former solution was found more compatible and more efficient for protein digestion.