976 resultados para Planar Filters
Resumo:
In the n{body problem a central con guration is formed when the position vector of each particle with respect to the center of mass is a common scalar multiple of its acceleration vector. Lindstrom showed for n = 3 and for n > 4 that if n ? 1 masses are located at xed points in the plane, then there are only a nite number of ways to position the remaining nth mass in such a way that they de ne a central con guration. Lindstrom leaves open the case n = 4. In this paper we prove the case n = 4 using as variables the mutual distances between the particles.
Resumo:
The noise power spectrum (NPS) is the reference metric for understanding the noise content in computed tomography (CT) images. To evaluate the noise properties of clinical multidetector (MDCT) scanners, local 2D and 3D NPSs were computed for different acquisition reconstruction parameters.A 64- and a 128-MDCT scanners were employed. Measurements were performed on a water phantom in axial and helical acquisition modes. CT dose index was identical for both installations. Influence of parameters such as the pitch, the reconstruction filter (soft, standard and bone) and the reconstruction algorithm (filtered-back projection (FBP), adaptive statistical iterative reconstruction (ASIR)) were investigated. Images were also reconstructed in the coronal plane using a reformat process. Then 2D and 3D NPS methods were computed.In axial acquisition mode, the 2D axial NPS showed an important magnitude variation as a function of the z-direction when measured at the phantom center. In helical mode, a directional dependency with lobular shape was observed while the magnitude of the NPS was kept constant. Important effects of the reconstruction filter, pitch and reconstruction algorithm were observed on 3D NPS results for both MDCTs. With ASIR, a reduction of the NPS magnitude and a shift of the NPS peak to the low frequency range were visible. 2D coronal NPS obtained from the reformat images was impacted by the interpolation when compared to 2D coronal NPS obtained from 3D measurements.The noise properties of volume measured in last generation MDCTs was studied using local 3D NPS metric. However, impact of the non-stationarity noise effect may need further investigations.
Resumo:
Objectives: The purpose of this study was to analyze the debris captured in the distal protection filters used during carotid artery stenting (CAS). Background: CAS is an option available to high-risk patients requiring revascularization. Filters are suggested for optimal stroke prevention during CAS. Methods: From May 2005 to June 2007, filters from 59 asymptomatic patients who underwent CAS were collected and sent to a specialized laboratory for light-microscope and histological analysis. Peri- and postprocedural outcomes were assessed during 1-year follow-up. Results: On the basis of biomedical imaging of the filter debris, the captured material could not be identified as embolized particles from the carotid plaque. On histological analysis the debris consisted mainly of red blood cell aggregates and/ or platelets, occasionally accompanied by granulocytes. We found no consistent histological evidence of embolized particles originating from atherosclerotic plaques. Post-procedure, three neurological events were reported: two (3.4%) transient ischemic attacks (TIA) and one (1.7%) ipsilateral minor stroke. Conclusion: The filters used during CAS in asymptomatic patients planned for cardiac surgery often remained empty. These findings may be explained by assuming that asymptomatic patients feature a different atherosclerotic plaque composition or stabilization through antiplatelet medication. Larger, randomized trials are clearly warranted, especially in the asymptomatic population. © 2012 Wiley Periodicals, Inc.
Resumo:
PURPOSE: To improve the traditional Nyquist ghost correction approach in echo planar imaging (EPI) at high fields, via schemes based on the reversal of the EPI readout gradient polarity for every other volume throughout a functional magnetic resonance imaging (fMRI) acquisition train. MATERIALS AND METHODS: An EPI sequence in which the readout gradient was inverted every other volume was implemented on two ultrahigh-field systems. Phantom images and fMRI data were acquired to evaluate ghost intensities and the presence of false-positive blood oxygenation level-dependent (BOLD) signal with and without ghost correction. Three different algorithms for ghost correction of alternating readout EPI were compared. RESULTS: Irrespective of the chosen processing approach, ghosting was significantly reduced (up to 70% lower intensity) in both rat brain images acquired on a 9.4T animal scanner and human brain images acquired at 7T, resulting in a reduction of sources of false-positive activation in fMRI data. CONCLUSION: It is concluded that at high B(0) fields, substantial gains in Nyquist ghost correction of echo planar time series are possible by alternating the readout gradient every other volume.
Resumo:
This work describes a simulation tool being developed at UPC to predict the microwave nonlinear behavior of planar superconducting structures with very few restrictions on the geometry of the planar layout. The software is intended to be applicable to most structures used in planar HTS circuits, including line, patch, and quasi-lumped microstrip resonators. The tool combines Method of Moments (MoM) algorithms for general electromagnetic simulation with Harmonic Balance algorithms to take into account the nonlinearities in the HTS material. The Method of Moments code is based on discretization of the Electric Field Integral Equation in Rao, Wilton and Glisson Basis Functions. The multilayer dyadic Green's function is used with Sommerfeld integral formulation. The Harmonic Balance algorithm has been adapted to this application where the nonlinearity is distributed and where compatibility with the MoM algorithm is required. Tests of the algorithm in TM010 disk resonators agree with closed-form equations for both the fundamental and third-order intermodulation currents. Simulations of hairpin resonators show good qualitative agreement with previously published results, but it is found that a finer meshing would be necessary to get correct quantitative results. Possible improvements are suggested.
Resumo:
This paper presents a simple and fast solution to the problem of finding the time variations of the forces that keep the object equilibrium when a finger is removed from a three contact point grasp or a finger is added to a two contact point grasp, assuming the existence of an external perturbation force (that can be the object weight itself). The procedure returns force set points for the control system of a manipulator device in a regrasping action. The approach was implemented and a numerical example is included in the paper to illustrate how it works.
Resumo:
The aim of this work was to select an appropriate digital filter for a servo application and to filter the noise from the measurement devices. Low pass filter attenuates the high frequency noise beyond the specified cut-off frequency. Digital lowpass filters in both IIR and FIR responses were designed and experimentally compared to understand their characteristics from the corresponding step responses of the system. Kaiser Windowing and Equiripple methods were selected for FIR response, whereas Butterworth, Chebyshev, InverseChebyshev and Elliptic methods were designed for IIR case. Limitations in digital filter design for a servo system were analysed. Especially the dynamic influences of each designed filter on the control stabilityof the electrical servo drive were observed. The criterion for the selection ofparameters in designing digital filters for servo systems was studied. Control system dynamics was given significant importance and the use of FIR and IIR responses in different situations were compared to justify the selection of suitableresponse in each case. The software used in the filter design was MatLab/Simulink® and dSPACE's DSP application. A speed controlled Permanent Magnet Linear synchronous Motor was used in the experimental work.
Resumo:
Laajojen pintojen kuvaaminen rajoitetussa työskentelytilassa riittävällä kuvatarkkuudella voi olla vaikeaa. Kuvaaminen on suoritettava osissa ja osat koottava saumattomaksi kokonaisnäkymäksi eli mosaiikkikuvaksi. Kuvauslaitetta käsin siirtelevän käyttäjän on saatava välitöntä palautetta, jotta mosaiikkiin ei jäisi aukkoja ja työ olisi nopeaa. Työn tarkoituksena oli rakentaa pieni, kannettava ja tarkka kuvauslaite paperi- ja painoteollisuuden tarpeisiin sekä kehittää palautteen antamiseen menetelmä, joka koostaaja esittää karkeaa mosaiikkikuvaa tosiajassa. Työssä rakennettiin kaksi kuvauslaitetta: ensimmäinen kuluttajille ja toinen teollisuuteen tarkoitetuista osista. Kuvamateriaali käsiteltiin tavallisella pöytätietokoneella. Videokuvien välinen liike laskettiin yksinkertaisella seurantamenetelmällä ja mosaiikkikuvaa koottiin kameroiden kuvanopeudella. Laskennallista valaistuksenkorjausta tutkittiin ja kehitetty menetelmä otettiin käyttöön. Ensimmäisessä kuvauslaitteessa on ongelmia valaistuksen ja linssivääristymien kanssa tuottaen huonolaatuisia mosaiikkikuvia. Toisessa kuvauslaitteessa nämä ongelmat on korjattu. Seurantamenetelmä toimii hyvin ottaen huomioon sen yksinkertaisuuden ja siihen ehdotetaan monia parannuksia. Työn tulokset osoittavat, että tosiaikainen mosaiikkikuvan koostaminen megapikselin kuvamateriaalista on mahdollista kuluttajille tarkoitetulla tietokonelaitteistolla.
Resumo:
The main objective of this thesis was togenerate better filtration technologies for effective production of pure starchproducts, and thereby the optimisation of filtration sequences using created models, as well as the synthesis of the theories of different filtration stages, which were suitable for starches. At first, the structure and the characteristics of the different starch grades are introduced and each starch grade is shown to have special characteristics. These are taken as the basis of the understanding of the differences in the behaviour of the different native starch grades and their modifications in pressure filtration. Next, the pressure filtration process is divided into stages, which are filtration, cake washing, compression dewatering and displacement dewatering. Each stage is considered individually in their own chapters. The order of the different suitable combinations of the process stages are studied, as well as the proper durations and pressures of the stages. The principles of the theory of each stageare reviewed, the methods for monitoring the progress of each stage are presented, and finally, the modelling of them is introduced. The experimental results obtained from the different stages of starch filtration tests are given and the suitability of the theories and models to the starch filtration are shown. Finally, the theories and the models are gathered together and shown, that the analysis of the whole starch pressure filtration process can be performed with the software developed.
Resumo:
La distribución del número y del volumen de partículas, y la eficiencia de eliminación de las partículas y los sólidos en suspensión de diferentes efluentes y sus filtrados, fueron analizadas para estudiar si los filtros más usuales en los sistemas de riego localizado eliminan las partículas que pueden obturar los goteros. En la mayoría de los efluentes y filtrados fue mínimo el número de partículas con diámetros superiores a 20 μm. Sin embargo, al analizar la distribución del volumen de las partículas, en los filtrados aparecieron partículas de dimensiones superiores a la luz de los filtros de anillas y malla, siendo el filtro de arena el que retuvo las partículas de mayor diámetro. La eficiencia de los filtros para retener partículas se debió más al tipo de efluente que al filtro. Se verificó también que la distribución del número de partículas sigue una relación de tipo potencial. Analizando el exponente β de la ley potencial, se halló que los filtros no modificaron significativamente la distribución del número de partículas de los efluentes.
Resumo:
Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the ethanol production in the fermentation of Saccharomyces cerevisiae.
Resumo:
We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2×2×3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies.
Resumo:
Kolmiulotteisten kappaleiden rekonstruktio on yksi konenäön haastavimmista ongelmista, koska kappaleiden kolmiulotteisia etäisyyksiä ei voida selvittää yhdestä kaksiulotteisesta kuvasta. Ongelma voidaan ratkaista stereonäön avulla, jossa näkymän kolmiulotteinen rakenne päätellään usean kuvan perusteella. Tämä lähestymistapa mahdollistaa kuitenkin vain rekonstruktion niille kappaleiden osille, jotka näkyvät vähintään kahdessa kuvassa. Piilossa olevien osien rekonstruktio ei ole mahdollista pelkästään stereonäön avulla. Tässä työssä on kehitetty uusi menetelmä osittain piilossa olevien kolmiulotteisten tasomaisten kappaleiden rekonstruktioon. Menetelmän avulla voidaan selvittää hyvällä tarkkuudella tasomaisista pinnoista koostuvan kappaleen muoto ja paikka käyttäen kahta kuvaa kappaleesta. Menetelmä perustuu epipolaarigeometriaan, jonka avulla selvitetään molemmissa kuvissa näkyvät kappaleiden osat. Osittain piilossa olevien piirteiden rekonstruointi suoritetaan käyttämäen stereonäköä sekä tietoa kappaleen rakenteesta. Esitettyä ratkaisua voitaisiin käyttää esimerkiksi kolmiulotteisten kappaleiden visualisointiin, robotin navigointiin tai esineentunnistukseen.
Resumo:
Colesteatomas são lesões císticas congênitas ou adquiridas que acometem as orelhas e que podem apresentar padrões típicos aos estudos de tomografia computadorizada, em função de suas características expansivas e tendência a promover erosão óssea. Entretanto, particularmente nos casos de resíduo ou recorrência pós-cirúrgica, a distinção entre colesteatoma e tecido inflamatório pode ser bastante difícil e, não raro, impossível com base somente nos achados tomográficos. A avaliação por ressonância magnética pode ser útil, particularmente neste contexto, uma vez que as sequências pós-contraste obtidas tardiamente e a difusão podem demonstrar padrões distintos nestas duas situações. Os artefatos condicionados pela interface ar/osso na região das mastoides podem limitar bastante a utilização da sequência de difusão echo-planar. A sequência de difusão sem echo-planar é uma alternativa na solução deste problema por estar menos sujeita a este tipo de artefato, fornecendo ainda imagens com maior resolução espacial e com espessuras de corte mais finas, as quais permitem a detecção de colesteatomas de pequenas dimensões.