948 resultados para Palladium catalyzed
Resumo:
An ultrasound-assisted synthesis of functionalized vinylic chlorides is described by palladium-catalyzed cross-coupling reaction of potassium aryltrifluoroborate salts and (Z)-2-chloro vinylic tellurides. This procedure offers easy access to vinylic chlorides architecture that contains sterically demanding groups in good yields. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work presents the progress made towards synthesizing 2-oxo-16-(3', 4'methylenedioxyphenyl)-trans-15-hexadecene, an antimycobacterial compound that was originally isolated from the leaves of Piper Sanctum. The hydrocarbon chain of the molecule was synthesized first by opening a 15-pentadecanolactone ring by means of HI, and performing an E2 elimination reaction on the molecule followed by an organolithium reaction with CH3Li. Hexadec-15-en-2-one that was afforded this way was later reacted with 5-bromobenzo[d][1,3]dioxole following the appropriate Heck reaction protocol that allows for the formation of a palladium catalyzed carbon-carbon bond. The modes of action of 2-oxo-16-(3', 4'-methylenedioxyphenyl)-trans-15hexadecene are comparable to the ones of rifampicin, a marketable drug that has been successfully used in the treatment of tuberculosis in the past. Additionally, this compound can serve as an intermediate towards the synthesis of 2-oxo-16-(3', 4' methylenedioxyphenyl)-hexadecane and 2-oxo-14-(3', 4' -methylenedioxyphenyl) tetradecane, both strong inhibitors of the growth of Mycobacterium tuberculosis. Lastly, due to Multi-Drug Resistant tuberculosis, there has been an increasing need to find alternative cures for tuberculosis. Therefore, the work on 2-qxo-16-(3', 4'methylenedioxyphenyl)-trans-15-hexadecene is not only chemically interesting but it is also biologically important.
Resumo:
This dissertation presents and discusses the preparation of molecular wires (MW) candidates that would then be probed for electron transfer properties. These wires are bridged by 1,4-diethynylbenzene derivatives with alkoxy side chains with palladium and ruthenium metal complex termini. Characterization of these compounds was performed by usual spectroscopic techniques like 1H, 13C{1H} and 31P{1H} NMR, MS, FTIR and UV-Vis as well as by cyclic voltammetry which allowed classifying the candidates in the Robin–Day system and determination of bridges side chain and length effects on electronic transport. Preparation of the 1,4-diethynylbenzene derivatives was done with synthetic pathways that relied heavily in palladium catalyzed cross-couplings (Sonogashira). A family of single ringed 1,4-diethynylbenzene ligands with different length alkoxy side chains (OCH3, OC2H5, OC7H15) was thus prepared allowing for the influence of these ring decorations to be assessed. The ruthenium binuclear rods showed communication between metal centres only when the shorter ligands were used whereas the longer Ru complexes showed only one redox pair in CV studies which is in agreement to non-communicating metal centres. Cyclic voltammetry studies show irreversible one wave processes for palladium dinuclear complexes, making these rods function as molecular insulators. Fluorescence decay studies performed on the prepared compounds (ligands and complexes) show a pattern of decreasing decay times upon coordination to the metal centres which can due to ligand charge redistribution upon coordination leading to non-radiative relaxation paths. Regarding the X-ray structures, two new ligand related structures were obtained as well as new structure for a palladium rod. The effect of the side chains was observed to be important to the wires’ electronic properties when comparing with the analogues without a side chain. The effect brought by longer chains is nevertheless almost negligible.
Resumo:
Ozone, first discovered in the mid 1800’s, is a triatomic allotrope of oxygen that is a powerful oxidant. For over a century, research has been conducted into the synthetic application and mechanism of reactions of ozone with organic compounds. One of the major areas of interest has been the ozonolysis of alkenes. The production of carbonyl compounds is the most common synthetic application of ozonolysis. The generally accepted mechanism developed by Rudolf Criegee for this reaction involves the 1,3-electrocyclic addition of ozone to the π bond of the alkene to form a 1,2,3-trioxolane or primary ozonide. The primary ozonide is unstable at temperatures above -100 °C and undergoes cycloreversion to produce the carbonyl oxide and carbonyl intermediates. These intermediates then recombine in another 1,3-electrocyclic addition step to form the 1,2,4-trioxolane or final ozonide. While the final ozonide is often isolable, most synthetic applications of ozonolysis require a subsequent reductive or oxidative step to form the desired carbonyl compound. During investigations into the nucleophilic trapping of the reactive carbonyl oxide, it was discovered that when amines were used as additives, an increased amount of reaction time was required in order to consume all of the starting material. Surprisingly, significant amounts of aldehydes and a suppression of ozonide formation also occurred which led to the discovery that amine N-oxides formed by the ozonation of the amine additives in the reaction were intercepting the carbonyl oxide. From the observed production of aldehydes, our proposed mechanism for the in situ reductive ozonolysis reaction with amine N-oxides involves the nucleophilic trapping of the carbonyl oxide intermediate to produce a zwitterionic adduct that fragments into 1O2, amine and the carbonyl thereby avoiding the formation of peroxidic intermediates. With the successful total syntheses of peroxyacarnoates A and D by Dr. Chunping Xu, the asymmetric total synthesis of peroxyplakorate A3 was investigated. The peroxyplakoric acids are cyclic peroxide natural products isolated from the Plakortis species of marine sponge that have been found to exhibit activity against malaria, cancer and fungi. Even though the peroxyplakorates differ from the peroxyacarnoates in the polyunsaturated tail and the head group, the lessons learned from the syntheses of the peroxyacarnoates have proven to be valuable in the asymmetric synthesis of peroxyplakorate A3. The challenges for the asymmetric synthesis of peroxyplakorate A3 include the stereospecific formation of the 3-methoxy-1,2-dioxane core with a propionate head group and the introduction of oxidation sensitive dienyl tail in the presence of a reduction sensitive 1,2-dioxane core. It was found that the stereochemistry of two of the chiral centers could be controlled by an anti-aldol reaction of a chiral propionate followed by the stereospecific intramolecular cyclization of a hydroperoxyacetal. The regioselective ozonolysis of a 1,2-disubstituted alkene in the presence of a terminal alkyne forms the required hydroperoxyacetal as a mixture of diastereomers. Finally, the dienyl tail is introduced by a hydrometallation/iodination of the alkyne to produce a vinyl iodide followed by a palladium catalyzed coupling reaction. While the coupling reaction was unsuccessful in these attempts, it is still believed that the intramolecular cyclization to introduce the 1,2-dioxane core could prove to be a general solution to many other cyclic peroxides natural products.
Resumo:
C2-Symmetrical, enantiopure 2,6-di[1-(1-aziridinyl)alkyl]pyridines (DIAZAPs) were prepared by a high-yielding, three-step sequence starting from 2,6-pyridinedicarbaldehyde and (S)-valinol or (S)-phenylglycinol. The new compounds were tested as ligands in palladium-catalyzed allylation of carbanions in different solvents. Almost quantitative yield and up to 99% enantiomeric excess were obtained in the reactions of the enolates derived from malonate, phenyl- and benzylmalonate dimethyl esters with 1,3-diphenyl-2-propenyl ethyl carbonate. Asymmetric synthesis of 2-(2-pyridyl)aziridines from chiral 2-pyridineimines bearing a stereogenic center at the nitrogen atom was development. The envisioned route involves the addition of chloromethyllithium to the imine derived from 2-pyridinealdehyde and (S)-valinol, protected as O-trimethylsilyl ether. The analogous reaction performed on the imine derived from (S)-valine methyl ester gave the product containing the aziridine ring as well as the α-chloro ketone group coming from the attack of chloromethyllithium to the ester function. Other stereogenic alkyl substituents at nitrogen gave less satisfactory results. Moreover, the aziridination protocol did not work on other aromatic imines, e.g. 3-pyridineimine and benzaldimine, which are not capable of bidentate chelation. The N-substituent could not be removed, but aziridine underwent ring-opening by attack of nitrogen, sulfur, and oxygen nucleophiles. Complete or prevalent regioselectivity was obtained using cerium trichloride heptahydrate as a catalyst. In some cases, the N-substituent could be removed by an oxidative protocol. The addition of organometallic (lithium, magnesium, zinc) reagents to 2-pyrroleimines derived from (S)-valinol and (S)-phenylglycinol gave the N-substituted-1-(2-pyrrolyl)alkylamines with high yields and diastereoselectivities. The (S,S)-diastereomers were useful intermediates for the preparation of enantiopure 1-[1-(2-pyrrolyl)alkyl]aziridines by routine cyclization of the β-aminoalcohol moiety and of (S)-N-benzoyl 1-[1-(2-pyrrolyl)alkyl]amines and their N-substituted derivatives by oxidative cleavage of the chiral auxiliary. 1-Allyl-2-pyrroleimines obtained from (S)-phenylglycinol and (S)-valinol underwent highly diastereoselective addition of allylmetal reagents, used in excess amounts, to give the corresponding secondary amines with concomitant allyl to 1-propenyl isomerisation of the 1-pyrrole substituent. Protection of the 2-aminoalcohol moiety as oxazolidinone, amide or Boc derivate followed by ring closing metathesis of the alkene groups gave the unsaturated bicyclic compound, whose hydrogenation afforded the indolizidine derivative as a mixture of separable diastereomers. The absolute configuration of the main diastereomer was assessed by X-ray crystallographic analysis.
Resumo:
The aim of this thesis was to investigate the synthesis of enantiomerically enriched heterocycles and dehydro-β-amino acid derivatives which can be used as scaffolds or intermediates of biologically active compounds, in particular as novel αvβ3 and α5β1 integrin ligands. The starting materials of all the compounds here synthesized are alkylideneacetoacetates. Alkylidene derivates are very usefull compounds, they are usually used as unsaturated electrophiles and they have the advantage of introducing different kind of functionality that may be further elaborated. In chapter 1, regio- and stereoselective allylic amination of pure carbonates is presented. The reaction proceeds via uncatalyzed or palladium-catalyzed conditions and affords enantiopure dehydro-β-amino esters that are useful precursor of biologically active compounds. Chapter 2 illustrates the synthesis of substituted isoxazolidines and isoxazolines via Michael addition followed by intramolecular hemiketalisation. The investigation on the effect of the Lewis acid catalysis on the regioselectivity of the addition it also reported. Isoxazolidines and isoxazolines are interesting heterocyclic compounds that may be regarded as unusual constrained -amino acids or as furanose mimetics. The synthesis of unusual cyclic amino acids precursors, that may be envisaged as proline analogues, as scaffolds for the design of bioactive peptidomimetics is presented in chapter 3. The synthesis of 2-substituted-3,4-dehydropyrrole derivatives starting from allylic carbonates via a two step allylic amination/ring closing metathesis (RCM) protocol is carried out. The reaction was optimized by testing different Grubbs’ catalysts and carbamate nitrogen protecting groups. Moreover, in view of a future application of these dehydro-β-amino acids as central core of peptidomimetics , the malonate chain was also used to protect nitrogen prior to RCM. Finally, chapter 4 presents the synthesis of two novel different classes of integrin antagonists, one derived from dehydro-β-amino acid prepared as described in chapter 1 and the other one has isoxazolidines synthesized in chapter 2 as rigid constrained core. Since that these compounds are promising RGD mimetics for αvβ3 and α5β1 integrins, they have been submitted to biological assay. and to interpret on a molecular basis their different affinities for the αvβ3 receptor, docking studies were performed using Glide program.
Resumo:
Discotic hexa-peri-hexabenzocoronene (HBC) derivatives have attracted intensive scientific interest due to their unique optoelectronic properties, which depends, to a large extend, upon the attached functional groups. The presented work covers the synthesis of novel HBC building blocks and new HBC derivatives as functional materials. The traditional preparation of HBC derivatives requires elaborate synthetic techniques and tremendous effort. Especially, more than 10 synthetic steps are usually necessary to approach HBCs with lower symmetries. In order to simplify the synthetic work and reduce the high costs, a novel synthetic strategy involving only four steps was developed based on 2,3,5,6-tetraphenyl-1,4-diiodobenzene intermediates and palladium catalyzed Suzuki cross coupling reactions. In order to introduce various functionalities and expand the diversity of multi-functionalizations, a novel C2v-symmetric dihalo HBC building block 2-47, which contains one iodine and one bromine in para positions, was prepared following the traditional intermolecular [4+2] Diels-Alder reaction route. The outstanding chemical selectivity between iodo and bromo groups in this compound consequently leads to lots of HBC derivatives bearing different functionalities. Directly attached heteroatoms will improve the material properties. According to the application of intramolecular Scholl reaction to a para-dimethoxy HPB, which leads to a meta-dimethoxy HBC, a phenomenon of phenyl group migration was discovered. Thereby, several interesting mechanistic details involving arenium cation intermediates were discussed. With a series of dipole functionalized HBCs, the molecular dynamics of this kind of materials was studied in different phases by DSC, 2D WAXD, solid state NMR and dielectric spectroscopies. High charge carrier mobility is an important parameter for a semiconductive material and depends on the degree of intramolecular order of the discotic molecules in thin films for HBC derivatives. Dipole – dipole interaction and hydrogen bonds were respectively introduced in order to achieve highly ordered supramolecular structure. The self-assembly behavior of these materials were investigated both in solution and solid state. Depending upon the different functionalities, these novel materials show either gelating or non-linear optical properties, which consequently broaden their applications as functional materials. In the field of conceivable electronic devices at a molecular level, HBCs hold high promise. Differently functionalized HBCs have been used as active component in the studies of single-molecular CFET and metal-SAMs-metal junctions. The outstanding properties shown in these materials promise their exciting potential applications in molecular devices.
Resumo:
Synthese und photophysikalische Eigenschaften funktionalisierter 1-Oligoalkinylamide Torsten Schweikert Zusammenfassung der Dissertation zur Erlangung des Grades „Doktor der Naturwissenschaften“ Die Zielsetzung dieser Arbeit bestand aus der Synthese verschiedener 1-Oligoalkinylamide und deren Funktionalisierung mit endständigen Akzeptoreinheiten, um einen Zugang zu konjugierten Donor-Akzeptor-substituierten Acetylenchromophoren zu realisieren, welche die Aminogruppe direkt am Acetylenkohlenstoff tragen. In einer kupfer(I)-katalysierten Cadiot-Chodkiewicz-Reaktion konnten terminale 1-Alkinylamide 1 mit verschiedenen substituierten 1-Bromalkinen 2 zu den 1-Oligoalkinylamiden 3 umgesetzt werden. Die Reaktion zeichnet sich durch eine hohe Toleranz gegenüber verschiedenen funktionellen Gruppen aus und lieferte die 1-Oligoalkinylamide 3 in Ausbeuten von 34 bis 99 %. NR1EWGNR2R1EWGR2Br5 Mol-% CuI30 Mol-% NH2OH·H2O2.0 Äquiv. n-BuNH2MeOH0 °C - 40 °C, 0.5 - 2 h34 - 99 %1.5 Äquiv. 213R1: Phenyl, 2-Iodphenyl, Benzyl, AlkylR2: Alkyl, Hydroxyalkyl, O-Tetrahydropyranyloxyalkyl, Methylester, 4-Nitrophenyl, 4-Cyanophenyl, 4-Dimesitylborylphenylnn Mittels UV/Vis-Spektroskopie sind die verschiedenen Donor-Akzeptor-substituierten Chromophore auf ihre photophysikalischen Eigenschaften hin untersucht worden. Dabei zeigten sich verschiedene Effekte bei Variation der Donor- und Akzeptorgruppen sowie bei Verlängerung der Acetylenbrücke auf die Lage der Charge-Transfer-Bande. Die Solvatochromie der Absorptionsbanden zeigte das Vorhandensein eines permanenten Dipolmoments der Verbindungen. Die elektrooptische Absorptionsmessung konnte schließlich Informationen über die Größe der Dipolmomente im Grundzustand und im angeregten Franck-Condon-Zustand liefern. Die elektrischen Dipolmomente der Verbindungen im Grundzustand in 1,4-Dioxan und Cyclohexan liegen im Bereich von (9.4 – 12.2)10-30 Cm. Nach optischer Anregung erhöhen sich die Dipolmomente um (25.0 – 92.3)10-30 Cm, wobei die Änderung des Dipolmoments bei optischer Anregung ein Maximum für die 1-Diinylamide durchläuft und bei drei konjugierten Acetylenbindungen stark abnimmt. Die synthetisierten 1-Diinylamide fanden ferner Anwendung in der Synthese von funktionalisierten 3-Alkinylindolen, wobei mittels einer palladiumkatalysierten Heteroanellierungssequenz in 2-Position am Indol ein Schwefel- oder Stickstoffnucleophil eingeführt werden konnte.
Resumo:
An efficient synthesis has been developed toward a novel series of conjugated blue emitting polymers containing triphenylene as repeating unit for polymer light emitting diodes (PLEDs). Soluble triphenylene-based co- and homo-polymers have been synthesized by the palladium-catalyzed Suzuki-Miyaura and the nickel-catalysed Yamamoto polycondensation reactions, respectively. The photophysical properties as well as the application of the polymers in PLED devices are presented here.rnIn addition a simple GNR fabrication method that allows for the production of atomically precise GNRs of different topologies and widths is introduced. This bottom-up approach consists in the surface-assisted coupling of suitably designed molecular triphenylene precursors into linear polyphenylenes and their subsequent cyclodehydrogenation and results in GNRs whose topology, width and edge periphery are defined by the precursor monomers. Various types of atomically precise GNRs thus eventually become available for experimental investigation and exploitation of their many predicted and technologically highly interesting properties. Furthermore, it is anticipated that this bottom-up approach of GNR fabrication will allow the engineering of chemical and electronic properties and the yet elusive realization of theoretically predicted structures such as intraribbon quantum dots, superlattice structures, or magnetic devices based on specific GNR edge states.rn
Resumo:
Carboline sind eine große Gruppe von natürlich vorkommenden Alkaloiden, die eine tricyclische Pyrido[b]indol-Ringstruktur gemeinsam habe. Das breite Spektrum biologischer Eigenschaften dieser Verbindungsklasse macht sie zu einem interessanten Syntheseziel. Die größte Herausforderung in der Darstellung von Carbolinen ist die regioselektive Funktionalisierung an den aromatischen Positionen. Im Rahmen dieser Arbeit konnte ein A ABC-Zugang zu beta- und gamma-Carbolinen entwickelt werden, dessen Schlüsselschritt der Aufbau des Carbolin-Gerüsts durch eine übergangsmetall-katalysierte [2+2+2]-Cycloaddition von 1,6-Diin-Einheiten und Nitrilen ist. Die benötigten Diin-Einheiten wurden in wenigen Schritten ausgehend von 2-Iodanilin durch eine Reaktionssequenz aus Sonogashira-Reaktion mit terminalen Alkinen, N-Tosylierung und N-Ethinylierung mit Alkinyliodonium-Salzen synthetisiert. Eine flexible Funktionalisierung dieser Diine wurde durch palladium-katalysierte sp2-sp-Kreuzkupplungsreaktionen der terminalen Alkine mit Aryl- und Alkenylhalogeniden erreicht. Cp*RuCl- und [Rh(cod)2]BF4/BINAP-katalysierte [2+2+2]-Cycloadditionen der 1,6-Diine mit elektronenarmen Nitrilen lieferte in hoher Regioselektivität beta- oder gamma-Carboline. In Übereinstimmung mit literaturbekannten übergangsmetall-katalysierten [2+2+2]-Cycloadditionen konnte dabei eine starke Abhängigkeit von sterischen und elektronischen Faktoren beobachtet werden. Um das Potential dieser Methode zu demonstrieren, wurde der Einsatz der [2+2+2]-Cycloaddition in Totalsynthese von Lavendamycin untersucht. Lavendamycin, ein aus Bakterien stammendes Chinochinolin-substituiertes beta-Carbolin mit antimikrobieller und signifikanter Antitumor-Aktivität, wurde ausgehend von Hydrochinon und 2-Iodanilin in 14 Schritten und in einer Gesamtausbeute von 29% dargestellt.
Resumo:
Im Rahmen dieser Arbeit wurden unterschiedliche Palladium-katalysierte Kreuzkupplungsreaktionen untersucht. Ein besonderes Augenmerk wurde dabei auf die Suzuki-Miyaura-Reaktion gelegt. Unter anderem aufgrund der langen Reaktionszeiten und der zweiphasigen Bedingungen ist diese Reaktionsklasse nur sehr schwer als kontinuierlicher Prozess zu etablieren. Vielen dieser Ansätze ist jedoch zu eigen, dass der große Vorteil der Mikroprozesstechnik, eine überlegene Kontrolle von Temperatur und Stofftransport, kaum ausgeschöpft wird. An diesem Punkt setzt diese Arbeit von technischer aus Seite an. Der zweite Schwerpunkt der Arbeit sind die prinzipiellen Untersuchungen an kontinuierlichen Flüssig-Flüssig-Zwei-Phasen-Reaktionen. Im Zuge des DBU-finanzierten Transkat-Projektes wurden hierbei anhand einfacher Veresterungsreaktionen grundlegende Kenntnisse zu Stofftransport, Grenzflächen und Phasentrennung innerhalb mikrostrukturierter Systeme gesammelt. Dank speziell angefertigter Glasmikroreaktoren von der Firma mikroglas chemtech GmbH war eine genaue optische und digitale Charakterisierung der Phasengrenzflächen möglich. Ein wichtiges Ergebnis war darüber hinaus, dass ionische Flüssigkeiten, als eigenständige Phasen verwendet, enorm zum Massentransfer und somit zur Reaktionsgeschwindigkeit beitragen können.
Resumo:
A study towards the synthesis of a new fulvestrant analogue with improved bioavailability was carried out. In this work a twelve-step synthetic route starting from β-estradiol was optimized and a palladium (Pd)-catalyzed endo-selective Heck reaction for the functionalization of an advanced intermediate was investigated.
Resumo:
S-adenosyl-L-homocysteine (AdoHcy) hydrolase effects hydrolytic cleavage of AdoHcy to produce both adenosine and L-homocysteine and is a feedback inhibitor of S-adenosyl- L-methionine (SAM). Nucleoside analogues bearing an alkenyl or fluoroalkenyl chain between sulfur and C5' utilizing Negishi coupling reactions were synthesized. Palladium-catalyzed cross-coupling between the 5'-deoxy-5'-(iodomethylene) nucleosides and alkylzinc bromides gives analogues with the alkenyl unit. Palladium-catalyzed selective monoalkylation of 5'-(bromofluoromethylene)-5'-deoxy-adenosine with alkylzinc bromide afford adenosylhomocysteine analogues with a 6'-(fluoro)vinyl motif. The vinylic adenine nucleosides produced time-dependent inactivation of the S-adenosyl-L-homocysteine hydrolases. Stannydesulfonylation reaction is a critical step in the synthesis of E-fluorovinyl cytidine (Tezacitabine) a ribonucleoside reductase inhibitor with a potent anticancer activity. The synthesis involves the removal of the sulfonyl group by a radical-mediated stannyldesulfonylation reaction using tributyltin hydride. In order to eliminate the toxicity of tin, I developed a radical-mediated germyldesulonylation utilizing less toxic germane hydrides. Treatment of the protected (E)-5'-deoxy-5'-[(p-toluenesulfonyl)-methylene]uridine and adenosine derivatives with tributyl- or triphenylgermane hydride effected radical-mediated germyldesulfonylations to give 5'-(tributyl- or triphenylgermyl)methylene-5'-deoxynucleoside derivatives as single (E)-isomers. Analogous treatment of 2'-deoxy-2'-[(phenylsulfonyl)methylene]uridine with Ph3GeH afforded the corresponding vinyl triphenylgermane product. Stereoselective halodegermylation of the (E)-5'-(tributylgermyl)-methylene-5'-deoxy nucleosides with NIS or NBS provided the Wittig-type (E)-5'-deoxy-5'-(halomethylene) nucleosides quantitatively. Radical-mediated thiodesulfonylation of the readily available vinyl and (α-fluoro) vinyl sulfones with aryl thiols in organic or aqueous medium to provide a bench and environmentally friendly protocol to access (α-fluoro)vinyl sulfides were developed. Methylation of the vinyl or (α-fluoro)vinyl phenyl sulfide gave access to the corresponding vinyl or (α-fluoro)vinyl sulfonium salts. These sulfonium ions were tested as possible methyl group donors during reactions with thiols, phenols or amino groups which are commonly present in natural amino acids.
Resumo:
Tese (doutorado)—Universidade de Brasília, Instituto de Química, 2016.
Resumo:
The reaction mechanism of Pd(O)-catalyzed allene bis-selenation reactions is investigated by using density functional methods. The overall reaction mechanism has been examined. It is found that with the bulkier PMe3 ligand, the rate-determining step is the reductive elimination process, while allene insertion and reductive elimination processes are competitive for the rate-determining step with the PH3 ligand, indicating the importance of the ligand effect. For both cis and trans palladium complexes, allene insertion into the Pd-Se bond of the trans palladium complex using the internal carbon atom attached to the selenyl group is prefer-red among the four pathways of allene insertion processes. The formation of sigma-allyl and pi-allyl palladium complexes is favored over that of the sigma-vinyl palladium species. By using methylallene, the regioselectivity of monosubstituted allene insertion into the Pd-Se bond is analyzed.