118 resultados para OLEDs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work shows the preparation and characterization of the new nanocomposites based on fibroin and biocellulose. Bacterial cellulose (BC) is an exopolysaccharide produced by bacteria of the genus Gluconacetobacter, which it has identical chemical structure of the cellulose from plants and it has gained attention in the field of research for its unique properties as excellent mechanical properties when dry and hydrated , higher capacity of water retention, moldability , biodegradability and excellent biological affinity . Silk fibroin (SF) is a structural protein present in the cocoon of the silkworm, Bombyx mori, has been identified as suitable for developing optical devices, tissue engineering application, enzyme immobilization, controlled release drug agent biopolymer. Silk fibroin/bacterial cellulose nanocomposite films were prepared impregnating different cellulose charges (0.5 %, 1.0 %, 1.5 %, 2.5 %, 5.0 % and 10.0 %) weight/weight. According mechanical tests and water and Paynes's cup permeability showed that SF/BC 1% nanocomposite has the most relevant results. Poliethylenoglicol (PEG) containing SF films improved optical and mechanical properties when compared to pristine SF film. New SF/BC nanocomposites could be applied in Medicine, as biodegradable packaging and flexible substrates for OLEDs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adduct TRIMEB:Eu(BTA)(3)center dot 2H(2)O was prepared and primarily characterized by photoluminescence (PL), and compared with free Eu(BTA)(3)center dot 2H(2)O. Both spectra show the Eu3+ ion emission, with subtle differences between lines for the free and encapsulated complex. The temperature dependence and chemical stability were studied, taking into account (in the latter case) the PL changes with time. The use of this new material as the emissive layer in OLEDs was tested by its successful incorporation into a device, using a conductive polymer as host. The use of the TRIMEB adduct increased the stability of the device (as compared with the free Eu complex). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluorene-based systems have shown great potential as components in organic electronics and optoelectronics (organic photovoltaics, OPVs, organic light emitting diodes, OLEDs, and organic transistors, OTFTs). These systems have drawn attention primarily because they exhibit strong blue emission associated with relatively good thermal stability. It is well-known that the electronic properties of polymers are directly related to the molecular conformations and chain packing of polymers. Here, we used three oligofluorenes (trimer, pentamer, and heptamer) as model systems to theoretically investigate the conformational properties of fluorene molecules, starting with the identification of preferred conformations. The hybrid exchange correlation functional, OPBE, and ZINDO/S-CI showed that each oligomer exhibits a tendency to adopt a specific chain arrangement, which could be distinguished by comparing their UV/vis electronic absorption and C-13 NMR spectra. This feature was used to identify the preferred conformation of the oligomer chains in chloroform-cast films by comparing experimental and theoretical UV/vis and C-13 NMR spectra. Moreover, the oligomer chain packing and dynamics in the films were studied by DSC and several solid state NMR techniques, which indicated that the phase behavior of the films may be influenced by the tendency that each oligomeric chain has to adopt a given conformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fabrication of Langmuir-Blodgett (LB) films of synthetic polymers allows the control of molecular architecture in order to optimize physical properties. In this paper, the surface chemistry of a quinoline-fluorene based copolymer spread on the air-water interface is investigated. Surface pressure-area isotherms as well as Polarization-Modulation Infrared Reflection-Absorption Spectroscopy (PM-IRRAS) were employed to characterize the films, which could be transferred to solid supports by the LB technique. Atomic force microscopy as well as UV-Vis and fluorescence spectroscopies have shown a regular deposition of the polymers, and the luminescence properties could be controlled with the number of layers deposited on the solid support. As a result, the photoluminescence of the LB films was considerably higher than that observed for the spin coated film, and the maximum emission peak was shifted to higher energies, which is attributed to the molecular-level interactions within the layer-ordered structure of the LB film. The luminescence response would possibly be tuned to approach the highest level, which allows the films to be employed in future applications in efficient optical devices such as organic light-emitting diodes (OLEDs). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Charge transport and shelf-degradation of MEH-PPV thin-films were investigated through stationary (e.g. current versus voltage - JxV) and transient (e.g. Time-of-Flight - ToF, Dark-Injection Space-Charge-Limited Current - DI-SCLC, Charge Extraction by Linearly Increasing Voltage - CELN) current techniques. Charge carrier mobility in nanometric films was best characterized through JxV and DI-SCLC. It approaches 10(-6) cm(2)Ns under a SCLC regime with deep traps for light-emitting diode applications. ToF measurements performed on micrometric layers (i.e. - 3 mu m) confirmed studies in 100 nm-thick films as deposited in OLEDs. All results were comparable to a similar poly(para-phenylene vinylene) derivative, MDMO-PPV. Electrical properties extracted from thin-film transistors demonstrated mobility dependence on carrier concentration in the channel (similar to 10(-7)-10(-4) cm(2)/Vs). At low accumulated charge levels and reduced free carrier concentration, a perfect agreement to the previously cited techniques was observed. Degradation was verified through mobility reduction and changes in trap distribution of states. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discotic molecules comprising a rigid aromatic core and flexible side chains have been promisingly applied in OLEDs as self-organizing organic semiconductors. Due to their potentially high charge carrier mobility along the columns, device performance can be readily improved by proper alignment of columns throughout the bulk. In the present work, the charge mobility was increased by 5 orders of magnitude due to homeotropic columnar ordering induced by the boundary interfaces during thermal annealing in the mesophase. State-of-the-art diodes were fabricated using spin-coated films whose homeotropic alignment with formation of hexagonal germs was observed by polarizing optical microscopy. The photophysical properties showed drastic changes at the mesophase-isotropic transition, which is supported by the gain of order observed by X-ray diffraction. The electrical properties were investigated by modeling the current−voltage characteristics by a space-charge-limited current transport with a field dependent mobility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zusammenfassung In der vorliegenden Arbeit konnte die neuartige Synthese von Triphyenylamin- und Triazin-Monomeren gezeigt werden. Die hergestellten Monomere konnten sowohl frei als auch lebend radikalisch polymerisiert werden, wodurch sich aus beiden Verbindungen Blockcopolymere herstellen ließen. Mittels GPC und DSC Messungen konnte die erhaltene Blockstruktur nachgewiesen werden. In Cyclovoltammetrie Messungen konnten die Elektronen-leitenden und Loch-leitenden Eigenschaften der Homopolymere nachgewiesen werden. Darüber hinaus war es mit diesen Messungen möglich, die Elektronen-leitenden und Loch-leitenden Blöcke dieser Blockcopolymere gezielt anzusprechen.Weiterhin wurden zwei neue Strukturierungsverfahren für Polymere entwickelt. In dem ersten Verfahren wurden dabei harte Siliziumstempel benutzt, so dass Strukturen im Nanometerbereich generiert werden konnten. Der gesamte Strukturierungsprozess konnte bei Raumtemperatur durchgeführt werden, was einen wesentlichen Zeitvorteil gegenüber NIL entspricht. Weiterhin wurden Linienstrukturen durch das Stempeln mit weichen Silikonstempeln hergestellt. Unabhängig ihrer Herstellungsmethode wirken diese Linienstrukturen als Orientierungsschichten für flüssigkristallines Polyfluoren, wobei die bis heute größte Fluoreszens-Anisotropie auf einem Lochleiter von 1:24 erhalten wurde. Somit sind OLEDs die polarisiertes Licht emittieren möglich.Im zweiten neuartigen Strukturierungsverfahren konnten getrennte Polymerstrukturen aus Loch- und Elektronenleitern durch Bestrahlen einer Monomermischung mit Licht erzeugt werden. Dieses Verfahren bietet den Vorteil, dass kein Material entfernt werden muss und die Strukturierung somit in einem Schritt erfolgt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of oligo-phenylene dendronised conjugated polymers was prepared. The divergent synthetic approach adopted allowed for the facile synthesis of a range of dendronised monomers from a common intermediate, e.g. first and second generation fluorene. Only the polymerisation of the first generation and alkylarylamine substituted dendronised fluorene monomers yielded high molecular weight materials, attributed to the low solubility of the remaining dendronised monomers. The alkylarylamine substituted dendronised poly(fluorene) was incorporated into an organic light emitting diode (OLED) and exhibited an increased colour stability in air compared to other poly(fluorenes). The concept of dendronisation was extended to poly(fluorenone), a previously insoluble material. The synthesis of the first soluble poly(fluorenone) was achieved by the incorporation of oligo-phenylene dendrons at the 4-position of fluorenone. The dendronisation of fluorenone allowed for a polymer with an Mn of 4.1 x 104 gmol-1 to be prepared. Cyclic voltammetry of the dendronised poly(fluorenone) showed that the electron affinity of the polymer was high and that the polymer is a promising n-type material. A dimer and trimer of indenofluorene (IF) were prepared from the monobromo IF. These oligomers were investigated by 2-dimensional wide angle x-ray spectroscopy (2D-WAXS), polarised optical microscopy (POM) and dielectric spectroscopy, and found to form highly ordered smetic phases. By attaching perylene dye as the end-capper on the IF oligomers, molecules that exhibited efficient Förster energy transfer were obtained. Indenofluorene monoketone, a potential defect structure for IF based OLED’s, was synthesised. The synthesis of this model defect structure allowed for the long wavelength emission in OLED’s to be identified as ketone defects. The long wavelength emission from the indenofluorene monoketone was found to be concentration dependent, and suggests that aggregate formation is occurring. An IF linked hexa-peri-hexabenzocoronene (HBC) dimer was synthesised. The 2D-WAXS images of this HBC dimer demonstrate that the molecule exhibits intercolumnar organisation perpendicular to the extrusion direction. POM images of mixtures of the HBC dimer mixed with an HBC with a low isotropic temperature demonstrated that the HBC dimer is mixing with the isotropic HBC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gels are materials that are easier to recognize than to define. For all practical purpose, a material is termed a gel if the whole volume of liquid is completely immobilized as usually tested by the ‘tube inversion’ method. Recently, supramolecular gels obtained from low molecular weight gelators (LMWGs) have attracted considerable attention in materials science since they represent a new class of smart materials sensitive to external stimuli, such as temperature, ultrasounds, light, chemical species and so on. Accordingly, during the past years a large variety of potentialities and applications of these soft materials in optoelectronics, as electronic devices, light harvesting systems and sensors, in bio-materials and in drug delivery have been reported. Spontaneous self-assembly of low molecular weight molecules is a powerful tool that allows complex supramolecular nanoscale structures to be built. The weak and non-covalent interactions such as hydrogen bonding, π–π stacking, coordination, electrostatic and van der Waals interactions are usually considered as the most important features for promoting sol-gel equilibria. However, the occurrence of gelation processes is ruled by further “external” factors, among which the temperature and the nature of the solvents that are employed are of crucial importance. For example, some gelators prefer aromatic or halogenated solvents and in some cases both the gelation temperature and the type of the solvent affect the morphologies of the final aggregation. Functionalized cyclopentadienones are fascinating systems largely employed as building blocks for the synthesis of polyphenylene derivatives. In addition, it is worth noting that structures containing π-extended conjugated chromophores with enhanced absorption properties are of current interest in the field of materials science since they can be used as “organic metals”, as semiconductors, and as emissive or absorbing layers for OLEDs or photovoltaics. The possibility to decorate the framework of such structures prompted us to study the synthesis of new hydroxy propargyl arylcyclopentadienone derivatives. Considering the ability of such systems to give π–π stacking interactions, the introduction on a polyaromatic structure of polar substituents able to generate hydrogen bonding could open the possibility to form gels, although any gelation properties has been never observed for these extensively studied systems. we have synthesized a new class of 3,4-bis (4-(3-hydroxy- propynyl) phenyl) -2, 5-diphenylcyclopentadienone derivatives, one of which (1a) proved to be, for the first time, a powerful organogelator. The experimental results indicated that the hydroxydimethylalkynyl substituents are fundamental to guarantee the gelation properties of the tetraarylcyclopentadienone unit. Combining the results of FT-IR, 1H NMR, UV-vis and fluorescence emission spectra, we believe that H-bonding and π–π interactions are the driving forces played for the gel formation. The importance of soft materials lies on their ability to respond to external stimuli, that can be also of chemical nature. In particular, high attention has been recently devoted to anion responsive properties of gels. Therefore the behaviour of organogels of 1a in toluene, ACN and MeNO2 towards the addition of 1 equivalent of various tetrabutylammonium salts were investigated. The rheological properties of gels in toluene, ACN and MeNO2 with and without the addition of Bu4N+X- salts were measured. In addition a qualitative analysis on cation recognition was performed. Finally the nature of the cyclic core of the gelator was changed in order to verify how the carbonyl group was essential to gel solvents. Until now, 4,5-diarylimidazoles have been synthesized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conjugated polymers are macromolecules that possess alternating single and double bonds along the main chain. These polymers combine the optoelectronic properties of semiconductors with the mechanical properties and processing advantages of plastics. In this thesis we discuss the synthesis, characterization and application of polyphenylene-based materials in various electronic devices. Poly(2,7-carbazole)s have the potential to be useful as blue emitters, but also as donor materials in solar cells due to their better hole-accepting properties. However, it is associated with two major drawbacks (1) the emission maximum occurs at 421 nm where the human eye is not very sensitive and (2) the 3- and 6- positions of carbazole are susceptible to chemical or electrochemical degradation. To overcome these problems, the ladder-type nitrogen-bridged polymers are synthesized. The resulting series of polymers, nitrogen-bridged poly(ladder-type tetraphenylene), nitrogen-bridged poly(ladder-type pentaphenylene), nitrogen-bridged poly(ladder-type hexaphenylene) and its derivatives are discussed in the light of photophysical and electrochemical properties and tested in PLEDs, solar cell, and OFETs. A promising trend which has emerged in recent years is the use of well defined oligomers as model compounds for their corresponding polymers. However, the uses of these molecules are many times limited by their solubility and one has to use vapor deposition techniques which require high vacuum and temperature and cannot be used for large area applications. One solution to this problem is the synthesis of small molecules having enough alkyl chain on the backbone so that they can be solution or melt processed and has the ability to form thin films like polymers as well as retain the high ordered structure characteristics of small molecules. Therefore, in the present work soluble ladderized oligomers based on thiophene and carbazole with different end group were made and tested in OFET devices. Carbazole is an attractive raw material for the synthesis of dyes since it is cheap and readily available. Carbazoledioxazine, commercially known as violet 23 is a representative compound of dioxazine pigments. As part of our efforts into developing cheap alternatives to violet 23, the synthesis and characterization of a new series of dyes by Buchwald-type coupling of 3-aminocarbazole with various isomers of chloroanthraquinone are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic systems, and in particular polyphenylene dendrimers, have recently attracted considerable attention from the synthetic organic chemistry community, as well as from photophysicists, particularly in view of the search for synthetic model analogies to photoelectric materials to fabricate organic light-emitting diodes (OLEDs), and even more advanced areas of research such as light-harvesting system, energy transfer and non-host device. Geometrically, dendrimers are unique systems that consist of a core, one or more dendrons, and surface groups. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Compared to small molecular or polymeric light-emitting materials, these dendritic materials can combine the benefits of both previous classes. The high molecular weights of these dendritic macromolecules, as well as the surface groups often attached to the distal ends of the dendrons, can improve the solution processability, and thus can be deposited from solution by simple processes such as spin-coating and ink-jet printing. Moreover, even better than the traditional polymeric light-emitting materials, the well-defined monodisperse distributed dendrimers possess a high purity comparable to that of small molecules, and as such can be fabricated into high performance OLEDs. Most importantly, the emissive chromophores can be located at the core of the dendrimer, within the dendrons, and/or at the surface of the dendrimers because of their unique dendritic architectures. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Therefore, the main goals of this thesis are the design and synthesis, characterization of novel functional dendrimers, e.g. polytriphenylene dendrimers for blue fluorescent, as well as iridium(III) complex cored polyphenylene dendrimers for green and red phosphorescent light emitting diodes. In additional to the above mentioned advantages of dendrimer based OLEDs, the modular molecular architecture and various functionalized units at different locations in polyphenylene dendrimers open up a tremendous scope for tuning a wide range of properties in addition to color, such as intermolecular interactions, charge mobility, quantum yield, and exciton diffusion. In conclusion, research into dendrimer containing OLEDs combines fundamental aspects of organic semiconductor physics, novel and highly sophisticated organic synthetic chemistry and elaborate device technology.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, three nitroxide based ionic systems were used to investigate structure and dynamics of their respective solutions in mixed solvents by means of electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopy at X- and W-band (9.5 and 94.5 GHz, respectively). rnFirst, the solvation of the inorganic radical Fremy’s salt (K2ON(SO3)2) in isotope substituted binary solvent mixtures (methanol/water) was investigated by means of high-field (W-band) pulse ENDOR spectroscopy and molecular dynamics (MD) simulations. From the analysis of orientation-selective 1H and 2H ENDOR spectra the principal components of the hyperfine coupling (hfc) tensor for chemically different protons (alcoholic methyl vs. exchangeable protons) were obtained. The methyl protons of the organic solvent approach with a mean distance of 3.5 Å perpendicular to the approximate plane spanned by ON(S)2 of the probe molecule. Exchangeable protons were found to be distributed isotropically, approaching closest to Fremy’s salt from the hydrogen-bonded network around the sulfonate groups. The distribution of exchangeable and methyl protons as found in MD simulations is in full agreement with the ENDOR results. The solvation was found to be similar for the studied solvent ratios between 1:2.3 and 2.3:1 and dominated by an interplay of H-bond (electrostatic) interactions and steric considerations with the NO group merely involved into H-bonds.rnFurther, the conformation of spin labeled poly(diallyldimethylammonium chloride) (PDADMAC) solutions in aqueous alcohol (methanol, ethanol, n-propanol, ethylene glycol, glycerol) mixtures in dependence of divalent sodium sulfate was investigated with double electron-electron resonance (DEER) spectroscopy. The DEER data was analyzed using the worm-like chain model which suggests that in organic-water solvent mixtures the polymer backbones are preferentially solvated by the organic solvent. We found a less serve impact on conformational changes due to salt than usually predicted in polyelectrolyte theory which stresses the importance of a delicate balance of hydrophobic and electrostatic interactions, in particular in the presence of organic solvents.rnFinally, the structure and dynamics of miniemulsions and polymerdispersions prepared with anionic surfactants, that were partially replaced by a spin labeled fatty acid in presence and absence of a lanthanide beta-diketonate complex was characterized by CW EPR spectroscopy. Such miniemulsions form multilayers with the surfactant head group bound to the lanthanide ion. Beta-diketonates were formerly used as NMR shift reagents and nowadays find application as luminescent materials in OLEDs and LCDs and as contrast agent in MRT. The embedding of the complex into a polymer matrix results in an easy processable material. It was found that the structure formation takes place in miniemulsion and is preserved during polymerization. For surfactants with carboxyl-head group a higher order of the alkyl chains and less lateral diffusion is found than for sulfat-head groups, suggesting a more uniform and stronger coordination to the metal ion. The stability of these bilayers depends on the temperature and the used surfactant which should be considered for the used polymerization temperature if a maximum output of the structured regions is wished.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper(I) halide clusters are recently considered as good candidate for optoelectronic devices such as OLEDs . Although the copper halide clusters, in particular copper iodide, are very well known since the beginning of the 20th century, only in the late ‘70s the interest on these compounds grew dramatically due their particular photophysical behaviour. These complexes are characterized by a dual triplet emission bands, named Cluster Centred (3CC) and Halogen-to-Ligand charge transfer (3XLCT), the intensities of which are strictly related with the temperature. The CC transition, due to the presence of a metallophylic interactions, is prevalent at ambient temperature while the XLCT transition, located preferentially on the ligand part, became more prominent at low temperature. Since these pioneering works, it was easy to understand the photophysical properties of this compounds became more interesting in solid-state respect to solution with an improvement in emission efficiency. In this work we aim to characterize in SS organocopper(I)iodide compounds to valuate the correlation between the molecular crystal structure and the photophysical properties. It is also considered to hike new strategies to synthesize CuI complexes from the wet reactions to the more green solvent free methods. The advantages in using these strategies are evident but, obtain a single crystal suitable for SCXRD analysis from these batches is quite impossible. The structure solution still remains the key point in this research so we tackle this problem solving the structure by X-ray powder diffraction data. When the sample was fully characterized we moved to design and development of the associated OLED-device. Since copper iodide complexes are often insoluble in organic solvents, the high vacuum deposition technique is preferred. A new non-conventional deposition process have also been proposed to avoid the low complex stability in this practice with an in-situ complex formation in a layer-by layer deposition route.