994 resultados para NIR-NUV wavelength


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The environment where galaxies are found heavily influences their evolution. Close groupings, like the ones in the cores of galaxy clusters or compact groups, evolve in ways far more dramatic than their isolated counterparts. We have conducted a multi-wavelength study of Hickson Compact Group 7 (HCG 7), consisting of four giant galaxies: three spirals and one lenticular. We use Hubble Space Telescope (HST) imaging to identify and characterize the young and old star cluster populations. We find young massive clusters (YMCs) mostly in the three spirals, while the lenticular features a large, unimodal population of globular clusters (GCs) but no detectable clusters with ages less than a few Gyr. The spatial and approximate age distributions of the similar to 300 YMCs and similar to 150 GCs thus hint at a regular star formation history in the group over a Hubble time. While at first glance the HST data show the galaxies as undisturbed, our deep ground-based, wide-field imaging that extends the HST coverage reveals faint signatures of stellar material in the intragroup medium (IGM). We do not, however, detect the IGM in H I or Chandra X-ray observations, signatures that would be expected to arise from major mergers. Despite this fact, we find that the H I gas content of the individual galaxies and the group as a whole are a third of the expected abundance. The appearance of quiescence is challenged by spectroscopy that reveals an intense ionization continuum in one galaxy nucleus, and post-burst characteristics in another. Our spectroscopic survey of dwarf galaxy members yields a single dwarf elliptical galaxy in an apparent stellar tidal feature. Based on all this information, we suggest an evolutionary scenario for HCG 7, whereby the galaxies convert most of their available gas into stars without the influence of major mergers and ultimately result in a dry merger. As the conditions governing compact groups are reminiscent of galaxies at intermediate redshift, we propose that HCGs are appropriate for studying galaxy evolution at z similar to 1-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cosmic shear requires high precision measurement of galaxy shapes in the presence of the observational point spread function (PSF) that smears out the image. The PSF must therefore be known for each galaxy to a high accuracy. However, for several reasons, the PSF is usually wavelength dependent; therefore, the differences between the spectral energy distribution of the observed objects introduce further complexity. In this paper, we investigate the effect of the wavelength dependence of the PSF, focusing on instruments in which the PSF size is dominated by the diffraction limit of the telescope and which use broad-band filters for shape measurement. We first calculate biases on cosmological parameter estimation from cosmic shear when the stellar PSF is used uncorrected. Using realistic galaxy and star spectral energy distributions and populations and a simple three-component circular PSF, we find that the colour dependence must be taken into account for the next generation of telescopes. We then consider two different methods for removing the effect: (i) the use of stars of the same colour as the galaxies and (ii) estimation of the galaxy spectral energy distribution using multiple colours and using a telescope model for the PSF. We find that both of these methods correct the effect to levels below the tolerances required for per cent level measurements of dark energy parameters. Comparison of the two methods favours the template-fitting method because its efficiency is less dependent on galaxy redshift than the broad-band colour method and takes full advantage of deeper photometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a closed form expression for the long wavelength limit of the effective action for hard thermal loops in an external gravitational field. It is a function of the metric, independent of time derivatives. It is compared and contrasted with the static limit, and with the corresponding limits in an external Yang-Mills field. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er(3+) doped Y(2)O(3) phosphor was prepared by the solution combustion method and characterized using powder x-ray diffraction and energy-dispersive analysis of x-ray mapping studies. Room temperature near infrared (NIR) to green up-conversion (UC) emissions in the region 520-580 nm {((2)H(11/2), (4)S(3/2)) -> (4)I(15/2)} and red UC emissions in the region 650-700 nm ((4)F(9/2) -> (4)I(15/2)) of Er(3+) ions have been observed upon direct excitation to the (4)I(11/2) level using similar to 972 nm laser radiation of nanosecond pulses. The possible mechanisms for the UC processes have been discussed on the basis of the energy level scheme, the pump power dependence as well as based on the temporal evolution. The excited state absorption is observed to be the dominant mechanism for the UC process. Y(2)O(3) : Er exhibits one thermally stimulated luminescence (TSL) peak around 367 degrees C. Electron spin resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the centres responsible for the TSL peak. Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of at least three distinct centres. One of them (centre I) with principal g-values g(parallel to) = 2.0415 and g(perpendicular to) = 2.0056 is identified as O(2)(-) centre while centre II with an isotropic g-factor 2.0096 is assigned to an F(+)-centre (singly ionized oxygen vacancy). Centre III is also assigned to an F(+)-centre with a small g-factor anisotropy (g(parallel to) = 1.974 and g(perpendicular to) = 1.967). Additional defect centres are observed during thermal annealing experiments and one of them appearing around 330 degrees C grows with the annealing temperature. This centre (assigned to an F(+)-centre) seems to originate from an F-centre (oxygen vacancy with two electrons) and the F-centre appears to correlate with the observed TSL peak in Y2O3 : Er phosphor. The trap depth for this peak has been determined to be 0.97 eV from TSL data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is combined with the potential of the technique of near infrared spectroscopy - NIR and chemometrics order to determine the content of diclofenac tablets, without destruction of the sample, to which was used as the reference method, ultraviolet spectroscopy, which is one of the official methods. In the construction of multivariate calibration models has been studied several types of pre-processing of NIR spectral data, such as scatter correction, first derivative. The regression method used in the construction of calibration models is the PLS (partial least squares) using NIR spectroscopic data of a set of 90 tablets were divided into two sets (calibration and prediction). 54 were used in the calibration samples and the prediction was used 36, since the calibration method used was crossvalidation method (full cross-validation) that eliminates the need for a validation set. The evaluation of the models was done by observing the values of correlation coefficient R 2 and RMSEC mean square error (calibration error) and RMSEP (forecast error). As the forecast values estimated for the remaining 36 samples, which the results were consistent with the values obtained by UV spectroscopy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an attempt to optimize a high yield, high efficiency artificial photosynthetic protein we have discovered unique energy and spatial architecture limits which apply to all light-activated photosynthetic systems. We have generated an analytical solution for the time behavior of the core three cofactor charge separation element in photosynthesis, the photosynthetic cofactor triad, and explored the functional consequences of its makeup including its architecture, the reduction potentials of its components, and the absorption energy of the light absorbing primary-donor cofactor. Our primary findings are two: First, that a high efficiency, high yield triad will have an absorption frequency more than twice the reorganization energy of the first electron transfer, and second, that the relative distance of the acceptor and the donor from the primary-donor plays an important role in determining the yields, with the highest efficiency, highest yield architecture having the light absorbing cofactor closest to the acceptor. Surprisingly, despite the increased complexity found in natural solar energy conversion proteins, we find that the construction of this central triad in natural systems matches these predictions. Our analysis thus not only suggests explanations for some aspects of the makeup of natural photosynthetic systems, it also provides specific design criteria necessary to create high efficiency, high yield artificial protein-based triads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a recent development in holography with multimode, large free-spectral range (FSR) diode lasers in photorefractive sillenite crystals. A novel refractometry method based on this type of holographic recording in Bi12TiO20 (BTO) crystals is proposed. The holographic image of a prism-shaped transparent sample appears covered of interference fringes, and as the sample is properly translated, the fringes run along the holographic image. An expression providing the refractive index of the medium as a function of the sample displacement and the correspondent number of running fringes was derived. The refractive indexes of optical (BK7) glass, ethanol, hexan, cumene and aqueous solution of NaCl with different concentrations were measured in order to test the method. The obtained results are in good agreement with the ones reported in literature or measured by us using a commercial Abbe refractometre. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate the energy transfer processes in TM3+/Er3+ doped telluride glass pumped at the commercial diode laser pump wavelength similar to 800 nm. Tailoring the rare-earths content in the glass matrix, seven main energy transfer channels within the doping range considered were identified, A 6-fold enhancement of the Er3+ visible frequency upconversion fluorescence at similar to 660 nm is observed due to the inclusion of Tm3+ ions. This is evidence of the relevant contribution of the route Er-1(I-4(11/2)) + Er-2(I-4(13/2)) -> Er-1(I-4(15/2)) + Er-2(F-4(9/2)) to the process. Energy migration among pumped I-4(9/2) level reducing the efficiency of the upconversion emission rate (H-3(11/2), S-4(3/2), and F-4(9/2)) is observed for Er3+ above 1.5 wt%. The rate equations regarding the observed energy transfer routes are determined and a qualitative analysis of the observed processes is reported. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Germanate glasses are of interest for optoelectronic applications because they combine high mechanical strength, high chemical durability and temperature stability with a large transmission window (400 to 4500 nm) and high refractive index (2.0). GeO2-PbO-Bi2O3 glasses doped with Y-b(3+) were fabricated by melting powders in a crucible and then pouring them in a brass mold. Energy Dispersive Spectroscopy showed that the glass composition has a high spatial uniformity and that the Yb concentration in the solid sample is proportional to the Yb concentration in the melt, what was confirmed by absorption measurements. Intense blue emission at 507 nm was observed, corresponding to half of the wavelength of the near infrared region (NIR) emission; besides, a decay lifetime of 0.25 ms was measured and this corresponds to half of the decay lifetime in the infrared region; these are very strong indications of the presence of blue cooperative luminescence. Larger targets have been produced to be sputtered, resulting in thin films for three dimensional (3D) display and waveguide applications. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The refractive index and the temperature coefficient of the optical path length change of tellurite (80TeO(2):20Li(2)O) and chalcogenide glasses (72.5Ga(2)S(3):27.5La(2)O(3)) were determined as a function of temperature (up to 150 degrees C) and wavelength (in the range between 454 and 632.8 nm). The tellurite glass exhibits the usual refractive index dispersion in the wavelength range analyzed, while anomalous refractive index dispersion was observed for the chalcogenide glass between 454 and 530 nm. The dispersion parameters were determined by means of the single-effective oscillator model. In addition, a strong dependence of the temperature coefficient of the optical path length on the photon energy and temperature was found for the chalcogenide glass. The latter was correlated to the shift of the optical band gap (or electronic edge) with temperature, which was interpreted by the electron-phonon interaction model. (C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results described in this work are part of a systematic search for long wavelength laser lines to be used in high magnetic field EPR applications and in plasma diagnostic. Four new far-infrared laser lines of CH2 = CF2 (1,1 difluoroethylene), optically pumped by a waveguide CO2 laser, have been discovered and characterized in wavelength, polarization relative to the pumping radiation and offset relative to the CO2 center frequency. New measurements of polarization and offset of 5 already known laser lines are also reported. A table of all of the known CO2 pumped FIR laser lines from this molecule is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method for surface profilometry by holography is presented. We used a diode laser emitting at many wavelengths simultaneously as the light source and a Bi12TiO20 (BTO) crystal as the holographic medium in single exposure processes. The employ of multi-wavelength, large free spectral range (FSR) lasers leads to holographic images covered of interference fringes corresponding to the contour lines of the studied surface. In order to obtain the relief of the studied surface, the fringe analysis was performed by the phase stepping technique (PST) and the phase unwrapping was carried out by the Cellular-automata method. We analysed the relief of a tilted flat metallic bar and a tooth prosthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)