899 resultados para Multi-scale Fractal Dimension


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'obiettivo principale della politica di sicurezza alimentare è quello di garantire la salute dei consumatori attraverso regole e protocolli di sicurezza specifici. Al fine di rispondere ai requisiti di sicurezza alimentare e standardizzazione della qualità, nel 2002 il Parlamento Europeo e il Consiglio dell'UE (Regolamento (CE) 178/2002 (CE, 2002)), hanno cercato di uniformare concetti, principi e procedure in modo da fornire una base comune in materia di disciplina degli alimenti e mangimi provenienti da Stati membri a livello comunitario. La formalizzazione di regole e protocolli di standardizzazione dovrebbe però passare attraverso una più dettagliata e accurata comprensione ed armonizzazione delle proprietà globali (macroscopiche), pseudo-locali (mesoscopiche), ed eventualmente, locali (microscopiche) dei prodotti alimentari. L'obiettivo principale di questa tesi di dottorato è di illustrare come le tecniche computazionali possano rappresentare un valido supporto per l'analisi e ciò tramite (i) l’applicazione di protocolli e (ii) miglioramento delle tecniche ampiamente applicate. Una dimostrazione diretta delle potenzialità già offerte dagli approcci computazionali viene offerta nel primo lavoro in cui un virtual screening basato su docking è stato applicato al fine di valutare la preliminare xeno-androgenicità di alcuni contaminanti alimentari. Il secondo e terzo lavoro riguardano lo sviluppo e la convalida di nuovi descrittori chimico-fisici in un contesto 3D-QSAR. Denominata HyPhar (Hydrophobic Pharmacophore), la nuova metodologia così messa a punto è stata usata per esplorare il tema della selettività tra bersagli molecolari strutturalmente correlati e ha così dimostrato di possedere i necessari requisiti di applicabilità e adattabilità in un contesto alimentare. Nel complesso, i risultati ci permettono di essere fiduciosi nel potenziale impatto che le tecniche in silico potranno avere nella identificazione e chiarificazione di eventi molecolari implicati negli aspetti tossicologici e nutrizionali degli alimenti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multi-scale model of edge coding based on normalized Gaussian derivative filters successfully predicts perceived scale (blur) for a wide variety of edge profiles [Georgeson, M. A., May, K. A., Freeman, T. C. A., & Hesse, G. S. (in press). From filters to features: Scale-space analysis of edge and blur coding in human vision. Journal of Vision]. Our model spatially differentiates the luminance profile, half-wave rectifies the 1st derivative, and then differentiates twice more, to give the 3rd derivative of all regions with a positive gradient. This process is implemented by a set of Gaussian derivative filters with a range of scales. Peaks in the inverted normalized 3rd derivative across space and scale indicate the positions and scales of the edges. The edge contrast can be estimated from the height of the peak. The model provides a veridical estimate of the scale and contrast of edges that have a Gaussian integral profile. Therefore, since scale and contrast are independent stimulus parameters, the model predicts that the perceived value of either of these parameters should be unaffected by changes in the other. This prediction was found to be incorrect: reducing the contrast of an edge made it look sharper, and increasing its scale led to a decrease in the perceived contrast. Our model can account for these effects when the simple half-wave rectifier after the 1st derivative is replaced by a smoothed threshold function described by two parameters. For each subject, one pair of parameters provided a satisfactory fit to the data from all the experiments presented here and in the accompanying paper [May, K. A. & Georgeson, M. A. (2007). Added luminance ramp alters perceived edge blur and contrast: A critical test for derivative-based models of edge coding. Vision Research, 47, 1721-1731]. Thus, when we allow for the visual system's insensitivity to very shallow luminance gradients, our multi-scale model can be extended to edge coding over a wide range of contrasts and blurs. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perception of Mach bands may be explained by spatial filtering ('lateral inhibition') that can be approximated by 2nd derivative computation, and several alternative models have been proposed. To distinguish between them, we used a novel set of ‘generalised Gaussian’ images, in which the sharp ramp-plateau junction of the Mach ramp was replaced by smoother transitions. The images ranged from a slightly blurred Mach ramp to a Gaussian edge and beyond, and also included a sine-wave edge. The probability of seeing Mach Bands increased with the (relative) sharpness of the junction, but was largely independent of absolute spatial scale. These data did not fit the predictions of MIRAGE, nor 2nd derivative computation at a single fine scale. In experiment 2, observers used a cursor to mark features on the same set of images. Data on perceived position of Mach bands did not support the local energy model. Perceived width of Mach bands was poorly explained by a single-scale edge detection model, despite its previous success with Mach edges (Wallis & Georgeson, 2009, Vision Research, 49, 1886-1893). A more successful model used separate (odd and even) scale-space filtering for edges and bars, local peak detection to find candidate features, and the MAX operator to compare odd- and even-filter response maps (Georgeson, VSS 2006, Journal of Vision 6(6), 191a). Mach bands are seen when there is a local peak in the even-filter (bar) response map, AND that peak value exceeds corresponding responses in the odd-filter (edge) maps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adapting to blurred or sharpened images alters perceived blur of a focused image (M. A. Webster, M. A. Georgeson, & S. M. Webster, 2002). We asked whether blur adaptation results in (a) renormalization of perceived focus or (b) a repulsion aftereffect. Images were checkerboards or 2-D Gaussian noise, whose amplitude spectra had (log-log) slopes from -2 (strongly blurred) to 0 (strongly sharpened). Observers adjusted the spectral slope of a comparison image to match different test slopes after adaptation to blurred or sharpened images. Results did not show repulsion effects but were consistent with some renormalization. Test blur levels at and near a blurred or sharpened adaptation level were matched by more focused slopes (closer to 1/f) but with little or no change in appearance after adaptation to focused (1/f) images. A model of contrast adaptation and blur coding by multiple-scale spatial filters predicts these blur aftereffects and those of Webster et al. (2002). A key proposal is that observers are pre-adapted to natural spectra, and blurred or sharpened spectra induce changes in the state of adaptation. The model illustrates how norms might be encoded and recalibrated in the visual system even when they are represented only implicitly by the distribution of responses across multiple channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forests play a pivotal role in timber production, maintenance and development of biodiversity and in carbon sequestration and storage in the context of the Kyoto Protocol. Policy makers and forest experts therefore require reliable information on forest extent, type and change for management, planning and modeling purposes. It is becoming increasingly clear that such forest information is frequently inconsistent and unharmonised between countries and continents. This research paper presents a forest information portal that has been developed in line with the GEOSS and INSPIRE frameworks. The web portal provides access to forest resources data at a variety of spatial scales, from global through to regional and local, as well as providing analytical capabilities for monitoring and validating forest change. The system also allows for the utilisation of forest data and processing services within other thematic areas. The web portal has been developed using open standards to facilitate accessibility, interoperability and data transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate warming is predicted to cause an increase in the growing season by as much as 30% for regions of the arctic tundra. This will have a significant effect on the physiological activity of the vascular plant species and the ecosystem as a whole. The need to understand the possible physiological change within this ecosystem is confounded by the fact that research in this extreme environment has been limited to periods when conditions are most favorable, mid June–mid August. This study attempted to develop the most comprehensive understanding to date of the physiological activity of seven tundra plant species in the Alaskan Arctic under natural and lengthened growing season conditions. Four interrelated lines of research, scaling from cellular signals to ecosystem processes, set the foundation for this study. ^ I established an experiment looking at the physiological response of arctic sedges to soil temperature stress with emphasis on the role of the hormone abscisic acid (ABA). A manipulation was also developed where the growing season was lengthened and soils were warmed in an attempt to determine the maximum physiological capacity of these seven vascular species. Additionally, the physiological capacities of four evergreens were tested in the subnivean environment along with the potential role anthocyanins play in their activity. The measurements were scaled up to determine the physiological role of these evergreens in maintaining ecosystem carbon fluxes. ^ These studies determined that soil temperature differentials significantly affect vascular plant physiology. ABA appears to be a physiological modifier that limits stomatal processes when root temperatures are low. Photosynthetic capacity was limited by internal plant physiological mechanisms in the face of a lengthened growing season. Therefore shifts in ecosystem carbon dynamics are driven by changes in species composition and biomass production on a per/unit area basis. These studies also found that changes in soil temperatures will have a greater effect of physiological processes than would the same magnitude of change in air temperature. The subnivean environment exhibits conditions that are favorable for photosynthetic activity in evergreen species. These measurements when scaled to the ecosystem have a significant role in limiting the system's carbon source capacity. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si prealloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al 4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hurricane is one of the most destructive and costly natural hazard to the built environment and its impact on low-rise buildings, particularity, is beyond acceptable. The major objective of this research was to perform a parametric evaluation of internal pressure (IP) for wind-resistant design of low-rise buildings and wind-driven natural ventilation applications. For this purpose, a multi-scale experimental, i.e. full-scale at Wall of Wind (WoW) and small-scale at Boundary Layer Wind Tunnel (BLWT), and a Computational Fluid Dynamics (CFD) approach was adopted. This provided new capability to assess wind pressures realistically on internal volumes ranging from small spaces formed between roof tiles and its deck to attic to room partitions. Effects of sudden breaching, existing dominant openings on building envelopes as well as compartmentalization of building interior on the IP were systematically investigated. Results of this research indicated: (i) for sudden breaching of dominant openings, the transient overshooting response was lower than the subsequent steady state peak IP and internal volume correction for low-wind-speed testing facilities was necessary. For example a building without volume correction experienced a response four times faster and exhibited 30–40% lower mean and peak IP; (ii) for existing openings, vent openings uniformly distributed along the roof alleviated, whereas one sided openings aggravated the IP; (iii) larger dominant openings exhibited a higher IP on the building envelope, and an off-center opening on the wall exhibited (30–40%) higher IP than center located openings; (iv) compartmentalization amplified the intensity of IP and; (v) significant underneath pressure was measured for field tiles, warranting its consideration during net pressure evaluations. The study aimed at wind driven natural ventilation indicated: (i) the IP due to cross ventilation was 1.5 to 2.5 times higher for Ainlet/Aoutlet>1 compared to cases where Ainlet/Aoutlet<1, this in effect reduced the mixing of air inside the building and hence the ventilation effectiveness; (ii) the presence of multi-room partitioning increased the pressure differential and consequently the air exchange rate. Overall good agreement was found between the observed large-scale, small-scale and CFD based IP responses. Comparisons with ASCE 7-10 consistently demonstrated that the code underestimated peak positive and suction IP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si pre-alloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visualization and interpretation of geological observations into a cohesive geological model are essential to Earth sciences and related fields. Various emerging technologies offer approaches to multi-scale visualization of heterogeneous data, providing new opportunities that facilitate model development and interpretation processes. These include increased accessibility to 3D scanning technology, global connectivity, and Web-based interactive platforms. The geological sciences and geological engineering disciplines are adopting these technologies as volumes of data and physical samples greatly increase. However, a standardized and universally agreed upon workflow and approach have yet to properly be developed. In this thesis, the 3D scanning workflow is presented as a foundation for a virtual geological database. This database provides augmented levels of tangibility to students and researchers who have little to no access to locations that are remote or inaccessible. A Web-GIS platform was utilized jointly with customized widgets developed throughout the course of this research to aid in visualizing hand-sized/meso-scale geological samples within a geologic and geospatial context. This context is provided as a macro-scale GIS interface, where geophysical and geodetic images and data are visualized. Specifically, an interactive interface is developed that allows for simultaneous visualization to improve the understanding of geological trends and relationships. These developed tools will allow for rapid data access and global sharing, and will facilitate comprehension of geological models using multi-scale heterogeneous observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of colorectal tumour segmentation in complex real world imagery. For efficient segmentation, a multi-scale strategy is developed for extracting the potentially cancerous region of interest (ROI) based on colour histograms while searching for the best texture resolution. To achieve better segmentation accuracy, we apply a novel bag-of-visual-words method based on rotation invariant raw statistical features and random projection based l2-norm sparse representation to classify tumour areas in histopathology images. Experimental results on 20 real world digital slides demonstrate that the proposed algorithm results in better recognition accuracy than several state of the art segmentation techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 2015 FRVT gender classification (GC) report evidences the problems that current approaches tackle in situations with large variations in pose, illumination, background and facial expression. The report suggests that both commercial and research solutions are hardly able to reach an accuracy over 90% for The Images of Groups dataset, a proven scenario exhibiting unrestricted or in the wild conditions. In this paper, we focus on this challenging dataset, stepping forward in GC performance by observing: 1) recent literature results combining multiple local descriptors, and 2) the psychophysics evidences of the greater importance of the ocular and mouth areas to solve this task...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation focuses on design challenges caused by secondary impacts to printed wiring assemblies (PWAs) within hand-held electronics due to accidental drop or impact loading. The continuing increase of functionality, miniaturization and affordability has resulted in a decrease in the size and weight of handheld electronic products. As a result, PWAs have become thinner and the clearances between surrounding structures have decreased. The resulting increase in flexibility of the PWAs in combination with the reduced clearances requires new design rules to minimize and survive possible internal collisions impacts between PWAs and surrounding structures. Such collisions are being termed ‘secondary impact’ in this study. The effect of secondary impact on board-level drop reliability of printed wiring boards (PWBs) assembled with MEMS microphone components, is investigated using a combination of testing, response and stress analysis, and damage modeling. The response analysis is conducted using a combination of numerical finite element modeling and simplified analytic models for additional parametric sensitivity studies.