Multi-scale colorectal tumour segmentation using a novel coarse to fine strategy


Autoria(s): Zhang, Kun; Crookes, Danny; Diamond, Jim; Fei, Minrui; Wu, Jianguo; Zhang, Peijian; Zhou, Huiyu
Data(s)

19/09/2016

Resumo

This paper addresses the problem of colorectal tumour segmentation in complex real world imagery. For efficient segmentation, a multi-scale strategy is developed for extracting the potentially cancerous region of interest (ROI) based on colour histograms while searching for the best texture resolution. To achieve better segmentation accuracy, we apply a novel bag-of-visual-words method based on rotation invariant raw statistical features and random projection based l2-norm sparse representation to classify tumour areas in histopathology images. Experimental results on 20 real world digital slides demonstrate that the proposed algorithm results in better recognition accuracy than several state of the art segmentation techniques.

Formato

application/pdf

Identificador

http://pure.qub.ac.uk/portal/en/publications/multiscale-colorectal-tumour-segmentation-using-a-novel-coarse-to-fine-strategy(a6fb4dfa-383b-41d0-8dae-4dfcf9b0f6f1).html

http://pure.qub.ac.uk/ws/files/72075390/7.27_Multi_scale_Colorectal_Tumour_Segmentation_Using_a_Novel_Coarse_to_Fine_Strategy_281_29_1_.pdf

Idioma(s)

eng

Direitos

info:eu-repo/semantics/openAccess

Fonte

Zhang , K , Crookes , D , Diamond , J , Fei , M , Wu , J , Zhang , P & Zhou , H 2016 , ' Multi-scale colorectal tumour segmentation using a novel coarse to fine strategy ' Paper presented at British Machine Vision Conference 2016 , York , United Kingdom , 19/09/2016 - 19/09/2016 , .

Tipo

conferenceObject