961 resultados para Mote hardware


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A full hardware implementation of a Weighted Fair Queuing (WFQ) packet scheduler is proposed. The circuit architecture presented has been implemented using Altera Stratix II FPGA technology, utilizing RLDII and QDRII memory components. The circuit can provide fine granularity Quality of Service (QoS) support at a line throughput rate of 12.8Gb/s in its current implementation. The authors suggest that, due to the flexible and scalable modular circuit design approach used, the current circuit architecture can be targeted for a full ASIC implementation to deliver 50 Gb/s throughput. The circuit itself comprises three main components; a WFQ algorithm computation circuit, a tag/time-stamp sort and retrieval circuit, and a high throughput shared buffer. The circuit targets the support of emerging wireline and wireless network nodes that focus on Service Level Agreements (SLA's) and Quality of Experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a hardware solution for packet classification based on multi-fields is presented. The proposed scheme focuses on a new architecture based on the decomposition method. A hash circuit is used in order to reduce the memory space required for the Recursive Flow Classification (RFC) algorithm. The implementation results show that the proposed architecture achieves significant performance advantage that is comparable to that of some well-known algorithms. The solution is based on Altera Stratix III FPGA technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel hardware architecture for elliptic curve cryptography (ECC) over GF(p) is introduced. This can perform the main prime field arithmetic functions needed in these cryptosystems including modular inversion and multiplication. This is based on a new unified modular inversion algorithm that offers considerable improvement over previous ECC techniques that use Fermat's Little Theorem for this operation. The processor described uses a full-word multiplier which requires much fewer clock cycles than previous methods, while still maintaining a competitive critical path delay. The benefits of the approach have been demonstrated by utilizing these techniques to create a field-programmable gate array (FPGA) design. This can perform a 256-bit prime field scalar point multiplication in 3.86 ms, the fastest FPGA time reported to date. The ECC architecture described can also perform four different types of modular inversion, making it suitable for use in many different ECC applications. © 2006 IEEE.