8 resultados para Mote hardware

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using neuromorphic analog VLSI techniques for modeling large neural systems has several advantages over software techniques. By designing massively-parallel analog circuit arrays which are ubiquitous in neural systems, analog VLSI models are extremely fast, particularly when local interactions are important in the computation. While analog VLSI circuits are not as flexible as software methods, the constraints posed by this approach are often very similar to the constraints faced by biological systems. As a result, these constraints can offer many insights into the solutions found by evolution. This dissertation describes a hardware modeling effort to mimic the primate oculomotor system which requires both fast sensory processing and fast motor control. A one-dimensional hardware model of the primate eye has been built which simulates the physical dynamics of the biological system. It is driven by analog VLSI circuits mimicking brainstem and cortical circuits that control eye movements. In this framework, a visually-triggered saccadic system is demonstrated which generates averaging saccades. In addition, an auditory localization system, based on the neural circuits of the barn owl, is used to trigger saccades to acoustic targets in parallel with visual targets. Two different types of learning are also demonstrated on the saccadic system using floating-gate technology allowing the non-volatile storage of analog parameters directly on the chip. Finally, a model of visual attention is used to select and track moving targets against textured backgrounds, driving both saccadic and smooth pursuit eye movements to maintain the image of the target in the center of the field of view. This system represents one of the few efforts in this field to integrate both neuromorphic sensory processing and motor control in a closed-loop fashion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis discusses various methods for learning and optimization in adaptive systems. Overall, it emphasizes the relationship between optimization, learning, and adaptive systems; and it illustrates the influence of underlying hardware upon the construction of efficient algorithms for learning and optimization. Chapter 1 provides a summary and an overview.

Chapter 2 discusses a method for using feed-forward neural networks to filter the noise out of noise-corrupted signals. The networks use back-propagation learning, but they use it in a way that qualifies as unsupervised learning. The networks adapt based only on the raw input data-there are no external teachers providing information on correct operation during training. The chapter contains an analysis of the learning and develops a simple expression that, based only on the geometry of the network, predicts performance.

Chapter 3 explains a simple model of the piriform cortex, an area in the brain involved in the processing of olfactory information. The model was used to explore the possible effect of acetylcholine on learning and on odor classification. According to the model, the piriform cortex can classify odors better when acetylcholine is present during learning but not present during recall. This is interesting since it suggests that learning and recall might be separate neurochemical modes (corresponding to whether or not acetylcholine is present). When acetylcholine is turned off at all times, even during learning, the model exhibits behavior somewhat similar to Alzheimer's disease, a disease associated with the degeneration of cells that distribute acetylcholine.

Chapters 4, 5, and 6 discuss algorithms appropriate for adaptive systems implemented entirely in analog hardware. The algorithms inject noise into the systems and correlate the noise with the outputs of the systems. This allows them to estimate gradients and to implement noisy versions of gradient descent, without having to calculate gradients explicitly. The methods require only noise generators, adders, multipliers, integrators, and differentiators; and the number of devices needed scales linearly with the number of adjustable parameters in the adaptive systems. With the exception of one global signal, the algorithms require only local information exchange.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhythmic motor behaviors in all animals appear to be under the control of "central pattern generator" circuits, neural circuits which can produce output patterns appropriate for behavior even when isolated from their normal peripheral inputs. Insects have been a useful model system in which to study the control of legged terrestrial locomotion. Much is known about walking in insects at the behavioral level, but to date there has been no clear demonstration that a central pattern generator for walking exists. The focus of this thesis is to explore the central neural basis for locomotion in the locust, Schistocerca americana.

Rhythmic motor patterns could be evoked in leg motor neurons of isolated thoracic ganglia of locusts by the muscarinic agonist pilocarpine. These motor patterns would be appropriate for the movement of single legs during walking. Rhythmic patterns could be evoked in all three thoracic ganglia, but the segmental rhythms differed in their sensitivities to pilocarpine, their frequencies, and the phase relationships of motor neuron antagonists. These different patterns could be generated by a simple adaptable model circuit, which was both simulated and implemented in VLSI hardware. The intersegmental coordination of leg motor rhythms was then examined in preparations of isolated chains of thoracic ganglia. Correlations between motor patterns in different thoracic ganglia indicated that central coupling between segmental pattern generators is likely to contribute to the coordination of the legs during walking.

The work described here clearly demonstrates that segmental pattern generators for walking exist in insects. The pattern generators produce motor outputs which are likely to contribute to the coordination of the joints of a limb, as well as the coordination of different limbs. These studies lay the groundwork for further studies to determine the relative contributions of central and sensory neural mechanisms to terrestrial walking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scalability of CMOS technology has driven computation into a diverse range of applications across the power consumption, performance and size spectra. Communication is a necessary adjunct to computation, and whether this is to push data from node-to-node in a high-performance computing cluster or from the receiver of wireless link to a neural stimulator in a biomedical implant, interconnect can take up a significant portion of the overall system power budget. Although a single interconnect methodology cannot address such a broad range of systems efficiently, there are a number of key design concepts that enable good interconnect design in the age of highly-scaled CMOS: an emphasis on highly-digital approaches to solving ‘analog’ problems, hardware sharing between links as well as between different functions (such as equalization and synchronization) in the same link, and adaptive hardware that changes its operating parameters to mitigate not only variation in the fabrication of the link, but also link conditions that change over time. These concepts are demonstrated through the use of two design examples, at the extremes of the power and performance spectra.

A novel all-digital clock and data recovery technique for high-performance, high density interconnect has been developed. Two independently adjustable clock phases are generated from a delay line calibrated to 2 UI. One clock phase is placed in the middle of the eye to recover the data, while the other is swept across the delay line. The samples produced by the two clocks are compared to generate eye information, which is used to determine the best phase for data recovery. The functions of the two clocks are swapped after the data phase is updated; this ping-pong action allows an infinite delay range without the use of a PLL or DLL. The scheme's generalized sampling and retiming architecture is used in a sharing technique that saves power and area in high-density interconnect. The eye information generated is also useful for tuning an adaptive equalizer, circumventing the need for dedicated adaptation hardware.

On the other side of the performance/power spectra, a capacitive proximity interconnect has been developed to support 3D integration of biomedical implants. In order to integrate more functionality while staying within size limits, implant electronics can be embedded onto a foldable parylene (‘origami’) substrate. Many of the ICs in an origami implant will be placed face-to-face with each other, so wireless proximity interconnect can be used to increase communication density while decreasing implant size, as well as facilitate a modular approach to implant design, where pre-fabricated parylene-and-IC modules are assembled together on-demand to make custom implants. Such an interconnect needs to be able to sense and adapt to changes in alignment. The proposed array uses a TDC-like structure to realize both communication and alignment sensing within the same set of plates, increasing communication density and eliminating the need to infer link quality from a separate alignment block. In order to distinguish the communication plates from the nearby ground plane, a stimulus is applied to the transmitter plate, which is rectified at the receiver to bias a delay generation block. This delay is in turn converted into a digital word using a TDC, providing alignment information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, ac- tuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based spec- ifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considera- tions for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area.

This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller.

The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and dynamic state estimation is ex- plored. Given a set placement of sensors on an electric power system, measurements from these sensors can be used in conjunction with control logic to infer the state of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 10^16 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.

We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns.

We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of electronically tuned optical sources and low-cost full-field detector arrays, completely eliminating the need for moving parts traditionally employed in 3-D imaging. We describe the basic TomICam principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept experiment. We also discuss the application of compressive sensing (CS) to the TomICam platform, and perform a series of numerical simulations. These simulations show that tenfold compression is feasible in CS TomICam, which effectively improves the volume acquisition speed by a factor ten.

We develop chirped-wave phase-locking techniques, and apply them to coherent beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables non-mechanical compensation of optical delays using acousto-optic frequency shifters, and its high chirp rate simultaneously increases the stimulated Brillouin scattering (SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier coherent-combining system. We use a chirp rate of 5*10^14 Hz/sec to increase the amplifier SBS threshold threefold, when compared to a single-frequency seed. We demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-doped fiber amplifier channels, achieving temporal phase noise levels corresponding to interferometric fringe visibilities exceeding 98%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With continuing advances in CMOS technology, feature sizes of modern Silicon chip-sets have gone down drastically over the past decade. In addition to desktops and laptop processors, a vast majority of these chips are also being deployed in mobile communication devices like smart-phones and tablets, where multiple radio-frequency integrated circuits (RFICs) must be integrated into one device to cater to a wide variety of applications such as Wi-Fi, Bluetooth, NFC, wireless charging, etc. While a small feature size enables higher integration levels leading to billions of transistors co-existing on a single chip, it also makes these Silicon ICs more susceptible to variations. A part of these variations can be attributed to the manufacturing process itself, particularly due to the stringent dimensional tolerances associated with the lithographic steps in modern processes. Additionally, RF or millimeter-wave communication chip-sets are subject to another type of variation caused by dynamic changes in the operating environment. Another bottleneck in the development of high performance RF/mm-wave Silicon ICs is the lack of accurate analog/high-frequency models in nanometer CMOS processes. This can be primarily attributed to the fact that most cutting edge processes are geared towards digital system implementation and as such there is little model-to-hardware correlation at RF frequencies.

All these issues have significantly degraded yield of high performance mm-wave and RF CMOS systems which often require multiple trial-and-error based Silicon validations, thereby incurring additional production costs. This dissertation proposes a low overhead technique which attempts to counter the detrimental effects of these variations, thereby improving both performance and yield of chips post fabrication in a systematic way. The key idea behind this approach is to dynamically sense the performance of the system, identify when a problem has occurred, and then actuate it back to its desired performance level through an intelligent on-chip optimization algorithm. We term this technique as self-healing drawing inspiration from nature's own way of healing the body against adverse environmental effects. To effectively demonstrate the efficacy of self-healing in CMOS systems, several representative examples are designed, fabricated, and measured against a variety of operating conditions.

We demonstrate a high-power mm-wave segmented power mixer array based transmitter architecture that is capable of generating high-speed and non-constant envelope modulations at higher efficiencies compared to existing conventional designs. We then incorporate several sensors and actuators into the design and demonstrate closed-loop healing against a wide variety of non-ideal operating conditions. We also demonstrate fully-integrated self-healing in the context of another mm-wave power amplifier, where measurements were performed across several chips, showing significant improvements in performance as well as reduced variability in the presence of process variations and load impedance mismatch, as well as catastrophic transistor failure. Finally, on the receiver side, a closed-loop self-healing phase synthesis scheme is demonstrated in conjunction with a wide-band voltage controlled oscillator to generate phase shifter local oscillator (LO) signals for a phased array receiver. The system is shown to heal against non-idealities in the LO signal generation and distribution, significantly reducing phase errors across a wide range of frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work deals with two related areas: processing of visual information in the central nervous system, and the application of computer systems to research in neurophysiology.

Certain classes of interneurons in the brain and optic lobes of the blowfly Calliphora phaenicia were previously shown to be sensitive to the direction of motion of visual stimuli. These units were identified by visual field, preferred direction of motion, and anatomical location from which recorded. The present work is addressed to the questions: (1) is there interaction between pairs of these units, and (2) if such relationships can be found, what is their nature. To answer these questions, it is essential to record from two or more units simultaneously, and to use more than a single recording electrode if recording points are to be chosen independently. Accordingly, such techniques were developed and are described.

One must also have practical, convenient means for analyzing the large volumes of data so obtained. It is shown that use of an appropriately designed computer system is a profitable approach to this problem. Both hardware and software requirements for a suitable system are discussed and an approach to computer-aided data analysis developed. A description is given of members of a collection of application programs developed for analysis of neuro-physiological data and operated in the environment of and with support from an appropriate computer system. In particular, techniques developed for classification of multiple units recorded on the same electrode are illustrated as are methods for convenient graphical manipulation of data via a computer-driven display.

By means of multiple electrode techniques and the computer-aided data acquisition and analysis system, the path followed by one of the motion detection units was traced from open optic lobe through the brain and into the opposite lobe. It is further shown that this unit and its mirror image in the opposite lobe have a mutually inhibitory relationship. This relationship is investigated. The existence of interaction between other pairs of units is also shown. For pairs of units responding to motion in the same direction, the relationship is of an excitatory nature; for those responding to motion in opposed directions, it is inhibitory.

Experience gained from use of the computer system is discussed and a critical review of the current system is given. The most useful features of the system were found to be the fast response, the ability to go from one analysis technique to another rapidly and conveniently, and the interactive nature of the display system. The shortcomings of the system were problems in real-time use and the programming barrier—the fact that building new analysis techniques requires a high degree of programming knowledge and skill. It is concluded that computer system of the kind discussed will play an increasingly important role in studies of the central nervous system.