968 resultados para Molecular Ecology
Resumo:
Microsatellite DNA has been developed into one of the most popular genetic markers. We have identified and cloned microsatellite loci in the genome of a free-living protozoan Euglena gracilis FACHB-848, using the random amplified microsatellites method (RAMS). The digoxigenin-labelled oligonucleotides(CT)(10) and (GT)(10) served as probes to detect complementary sequences in the randomly amplified polymorphic DNA (RAPD) fingerprints produced by means of Southern blotting. Subsequently, positive RAPD fragments were cloned. From a total of 31 RAPD primer profiles, eight microsatellite loci of E. gracilis were detected and characterized. Further, six sites (i.e. EGMS1, EGMS3, EGMS4, EGMS5, EGMS6, and EGMS7) showed polymorphisms. We found a GT or CT microsatellite every 10.5 kb in the genome of E. gracilis, and similar to animal genomes, the (GT)(n) motif was much more abundant than the (CT)(n) motif. These polymorphic microsatellite DNA will serve as advantageous molecular markers for studying the genetic diversity and molecular ecology of Euglena.
Resumo:
Six polymorphic microsatellite markers were isolated and characterized using an enriched library technique in the large yellow croaker (Pseudosciaena crocea Richardson, 1864), a commercially important marine fish in China. They showed PIC (polymorphism information content) ranging from 0.064 to 0.885 (average of 0.580) and allele numbers ranging from two to 13 (average of 7.5), which were useful for the studies on population genetics and selective breeding of the large yellow croaker.
Resumo:
About a third of microsatellite primers designed for common carp (Cyprinus carpio) was successfully amplified in silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis). These markers, inherited in Mendelian mode, are of potential applications in cypinid genetics.
Resumo:
利用传统及分子微生物生态学研究方法,研究了在乙草胺、甲胺磷、铜离子及二元组合胁迫下,黑土中六种类群微生物数量,细菌种群多样性,微生物碳源代谢(BloLoGGN)功能多样性及特征、土壤脱氢酶活性(DHA)、底物诱导呼吸强度(SIR)等土壤微生物特性的生态过程及变化规律。结果表明:所有农药处理,均对细菌、放线菌及磷细菌产生明显急性毒性效应;对土壤自生固氮菌及硅酸盐细菌生长产生长期的慢性毒性效应;对土壤真菌产生强烈的刺激效应,使土壤真菌数量显著升高。由165 ONA-PCR-DGGE方法对土壤细菌研究结果显示,所有农药胁迫均使土壤细菌多样度降低、细菌种群结构受到严重影响;土壤微生物群落代谢功能多样性及指纹特征因农药种类,浓度及组合不同,受到不同程度影响,功能多样性降低,代谢指纹特征被改变:所有农药组合处理均使土壤DHA受到长期抑制,对土壤底物诱导呼吸强度无显著影响,但改变了土壤DHA和S工R的动态变化规律。野外农药长期作用使土壤SIR与对照无显著差异,土壤DHA明显降低,土壤细菌、磷细菌、固氮菌及硅酸盐细菌数量明显减少,土壤真菌数量显著升高。由农药及其组合处理与土壤微生物群落生长剂量一效应关系,证明:三种农药对土壤微生物群落生长随投加农药种类、浓度和组合不同起促进或抑制双重作用;组合使相应单因子农药毒性增强,表现出协同或加和毒性效应;从清洁土壤中筛选出一株乙草胺耐受菌产酸克雷伯氏菌(Klebbsirlla oxytoca),在固体平板培养基上能耐受300omg·L-1乙草胺。
Resumo:
A total of 45 microsatellite loci from yellow perch, Perca flavescens, were isolated and characterized. Among the 45 microsatellite loci, 32 had more than two alleles. A wild population of P. flavescens (n = 48) was used to examine the allele range of the microsatellite loci. Mendelian inheritance of alleles was confirmed by examining the amplified products in pair-mated families. The number of alleles for the 32 polymorphic loci varied from two to 16, and observed heterozygosity ranged between 0.024 (YP79) and 0.979 (YP60). Cross-species polymorphic amplification in four other Percidae species was successful for 22 loci.
Resumo:
Lutjanus argentimaculatus, also called mangrove red snapper, is a commercially important fish in East Asia. A proper understanding of population structure is primarily linked with the management of genetic resources in exploiting marine fisheries. Herein, seven microsatellite loci, which showed high polymorphism (observed heterozygosity per locus ranging from 0.3571 to 0.7857 and expected heterozygosity per locus ranging from 0.6236 to 0.8821), were isolated and characterized from L. argentimaculatus. Cross-species amplifications also indicate that primers designed for these loci may be useful for further studies about other closely phylogenetic species of the family Lutjanidae.
Resumo:
Given the commercial and ecological importance of the Asian paddle crab, Charybdis japonica, there is a clearly need for genetic and molecular research on this species. Here, we present the complete mitochondrial genome sequence of C. japonica, determined by the long-polymerase chain reaction and primer walking sequencing method. The entire genome is 15,738 bp in length, encoding a standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes, plus the putative control region, which is typical for metazoans. The total A+T content of the genome is 69.2%, lower than the other brachyuran crabs except for Callinectes sapidus. The gene order is identical to the published marine brachyurans and differs from the ancestral pancrustacean order by only the position of the tRNA (His) gene. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of 13 protein-coding genes strongly support the monophyly of Dendrobranchiata and Pleocyemata, which is consistent with the previous taxonomic classification. However, the systematic status of Charybdis within subfamily Thalamitinae of family Portunidae is not supported. C. japonica, as the first species of Charybdis with complete mitochondrial genome available, will provide important information on both genomics and molecular ecology of the group.
Resumo:
The method of creating enriched microsatellite libraries can supply an abundant source of microsatellite sequences at a considerably reduced cost. Here we report the development of 15 polymorphic microsatellite loci from the bay scallop, Argopecten irradians, using enrichment protocol. Polymorphism was assessed in a sample of hatchery population (n = 38) revealing three to seven alleles per locus. The expected and observed heterozygosities ranged from 0.198 to 0.813 and from 0.083 to 0.833, respectively. These markers will be useful for genetic variation monitoring and parentage analysis.
Resumo:
We report here for the first time 12 polymorphic single nucleotide polymorphisms (SNPs) in a commercially important gastropod, Pacific abalone (Haliotis discus hannai) that were identified by searching expressed sequence tag database. These SNP loci (seven nuclear and five mitochondrial SNPs) were polymorphic among 37 wild abalone individuals, based on a four-primer allele-specific polymerase chain reaction analysis. All loci had two alleles and the minor allele frequency ranged from 0.027 to 0.473. For the seven nuclear SNPs, the expected and observed heterozygosities ranged from 0.053 to 0.499 and from 0.054 to 0.811, respectively.
Resumo:
How coniferous trees in northern China changed their distribution ranges in response to Quaternary climatic oscillations remains largely unknown. Here we report a study of the phylogeography of Pinus tabulaeformis, an endemic and dominant species of coniferous forest in northern China. We examined sequence variation of maternally inherited, seed-dispersed mitochondrial DNA (mtDNA) (nad5 intron 1 and nad4/3-4) and paternally inherited, pollen- and seed-dispersed chloroplast DNA (cpDNA) (rpl16 and trnS-trnG) within and among 30 natural populations across the entire range of the species. Six mitotypes and five chlorotypes were recovered among 291 trees surveyed. Population divergence was high for mtDNA variation (G(ST) = 0.738, N-ST = 0.771) indicating low levels of seed-based gene flow and significant phylogeographical structure (N-ST > G(ST), P < 0.05). The spatial distribution of mitotypes suggests that five distinct population groups exist in the species: one in the west comprising seven populations, a second with a north-central distribution comprising 15 populations, a third with a southern and easterly distribution comprising five populations, a fourth comprising one central and one western population, and a fifth comprising a single population located in the north-central part of the species' range. Each group apart from the fourth group is characterized by a distinct mitotype, with other mitotypes, if present, occurring at low frequency. It is suggested, therefore, that most members of each group apart from Group 4 are derived from ancestors that occupied different isolated refugia in a previous period of range fragmentation of the species, possibly at the time of the Last Glacial Maximum. Possible locations for these refugia are suggested. A comparison of mitotype diversity between northern and southern subgroups within the north-central group of populations (Group 2) showed much greater uniformity in the northern part of the range both within and between populations. This could indicate a northward migration of the species from a southern refugium in this region during the postglacial period, although alternative explanations cannot be ruled out. Two chlorotypes were distributed across the geographical range of the species, resulting in lower levels of among-population chlorotype variation. The geographical pattern of variation for all five chlorotypes provided some indication of the species surviving past glaciations in more than one refugium, although differentiation was much less marked, presumably due to the greater dispersal of cpDNA via pollen.
Resumo:
The disjunct distribution of forests in the Qinghai-Tibetan Plateau (QTP) and adjacent Helan Shan and Daqing Shan highlands provides an excellent model to examine vegetation shifts, glacial refugia and gene flow of key species in this complex landscape region in response to past climatic oscillations and human disturbance. In this study, we examined maternally inherited mitochondrial DNA (nad1 intron b/c and nad5 intron 1) and paternally inherited chloroplast DNA (trnC-trnD) sequence variation within a dominant forest species, Picea crassifolia Kom. We recovered nine mitotypes and two chlorotypes in a survey of 442 individuals from 32 populations sampled throughout the species' range. Significant mitochondrial DNA population subdivision was detected (G(ST) = 0.512; N-ST = 0.679), suggesting low levels of recurrent gene flow through seeds among populations and significant phylogeographical structure (N-ST > GST, P < 0.05). Plateau haplotypes differed in sequence from those in the adjacent highlands, suggesting a long period of allopatric fragmentation between the species in the two regions and the presence of independent refugia in each region during Quaternary glaciations. On the QTP platform, all but one of the disjunct populations surveyed were fixed for the same mitotype, while most populations at the plateau edge contained more than one haplotype with the mitotype that was fixed in plateau platform populations always present at high frequency. This distribution pattern suggests that present-day disjunct populations on the QTP platform experienced a common recolonization history. The same phylogeographical pattern, however, was not detected for paternally inherited chloroplast DNA haplotypes. Two chlorotypes were distributed throughout the range of the species with little geographical population differentiation (G(ST) = N-ST = 0.093). This provides evidence for highly efficient pollen-mediated gene flow among isolated forest patches, both within and between the QTP and adjacent highland populations. A lack of isolation to pollen-mediated gene flow between forests on the QTP and adjacent highlands is surprising given that the Tengger Desert has been a geographical barrier between these two regions for approximately the last 1.8 million years.
Resumo:
The vegetation of the northeast Qinghai-Tibetan Plateau is dominated by alpine meadow and desert-steppe with sparse forests scattered within it. To obtain a better understanding of the phylogeography of one constituent species of the forests in this region, we examined chloroplast trnT-trnF and trnS-trnG sequence variation within Juniperus przewalskii, a key endemic tree species. Sequence data were obtained from 392 trees in 20 populations covering the entire distribution range of the species. Six cpDNA haplotypes were identified. Significant population subdivision was detected (G(ST) = 0.772, N-ST = 0.834), suggesting low levels of recurrent gene flow among populations and significant phylogeographic structure (N-ST > G(ST), P < 0.05). Eight of the nine disjunct populations surveyed on the high-elevation northeast plateau were fixed for a single haplotype (A), while the remaining, more westerly population, contained the same haplotype at high frequency together with two low frequency haplotypes (C and F). In contrast, most populations that occurred at lower altitudes at the plateau edge were fixed or nearly fixed for one of two haplotypes, A or E. However, two plateau edge populations had haplotype compositions different from the rest. In one, four haplotypes (A, B, D and E) were present at approximately equivalent frequencies, which might reflect a larger refugium in the area of this population during the last glacial period. Phylogenetic analysis indicated that the most widely distributed haplotype A is not ancestral to other haplotypes. The contrasting phylogeographic structures of the haplotype-rich plateau edge area and the almost haplotype-uniform plateau platform region indicate that the plateau platform was recolonized by J. przewalskii during the most recent postglacial period. This is supported by the findings of a nested clade analysis, which inferred that postglacial range expansion from the plateau edge followed by recent fragmentation is largely responsible for the present-day spatial distribution of cpDNA haplotypes within the species.
Resumo:
J. Allainguillaume, M. Alexander, J. M. Bullock, M. Saunders, C. J. Allender, G. King, C. S. Ford, M. J. Wilkinson. (2006). Fitness of hybrids between rapeseed Brassica napus and wild Brassica rapa in natural habitats. Molecular Ecology, 15 (4) 1175-1184. RAE2008
Resumo:
This study was undertaken to investigate the general biology, including the reproductive cycle and health status, of two clam taxa in Irish waters, with particular reference to the Irish Sea area. Monthly samples of the soft shell clam, Mya arenaria, were collected from Bannow Bay, Co. Wexford, Ireland, for sixteen months, and of the razor clam, Ensis spp. from the Skerries region (Irish Sea) between June 2010 and September 2011. In 2010, M. arenaria in Bannow Bay matured over the summer months, with both sexes either ripe or spawning by August. The gonads of both sexes of E. siliqua developed over autumn and winter 2010, with the first spawning individuals being recorded in January 2011. Two unusually cold winters, followed by a warmer than average spring, appear to have affected M. arenaria and E. siliqua gametogenesis at these sites. It was noted that wet weight of E. siliqua dropped significantly in the summer of both 2010 and 2011, after spawning, which may impact on the economic viability of fishing during this period. Additional samples of M. arenaria were collected at Flaxfort (Ireland), and Ensis spp. at Oxwich (Wales), and the pathology of all clams was examined using both histological and molecular methods. No pathogenic conditions were observed in M. arenaria while Prokaryote inclusions, trematode parasites, Nematopsis spp. and inflammatory pathologies were observed at low incidences in razor clams from Ireland but not from Wales; the first time these conditions have been reported in Ensis spp. in northern European waters. Mya arenaria from sites in Europe and eastern and western North America were investigated for genetic variation using both mitochondrial (cytochrome oxidase I (COI) and 16S ribosomal RNA genes) and nuclear markers (10 microsatellite loci). Both mitochondrial CO1 and all nuclear markers showed reduced levels of variation in certain European samples, with significant differences in haplotype and allelic composition between most samples, particularly those from the two different continents, but with the same common haplotypes or alleles throughout the range. The appearance of certain unique rare haplotypes and microsatellite alleles in the European samples suggest a complicated origin involving North American colonization but also possible southern European Pleistocene refugia. Specimens of Ensis spp. were obtained from five coastal areas around Ireland and Wales and species-specific PCR primers were used to amplify the internal transcribed spacer region 1 (ITS1) and the mitochondrial DNA CO1 gene and all but 15 razor clams were identified as Ensis siliqua. Future investigations should focus on continued monitoring of reproductive biology and pathology of the two clam taxa (in particular, to assess the influence of environmental change), and on genetics of southern European M. arenaria and sequencing the CO1 gene in Ensis individuals to clarify species identity