999 resultados para Método MCMC a doisestágios


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algorithms are presented for detection and tracking of multiple clusters of co-ordinated targets. Based on a Markov chain Monte Carlo sampling mechanization, the new algorithms maintain a discrete approximation of the filtering density of the clusters' state. The filters' tracking efficiency is enhanced by incorporating various sampling improvement strategies into the basic Metropolis-Hastings scheme. Thus, an evolutionary stage consisting of two primary steps is introduced: 1) producing a population of different chain realizations, and 2) exchanging genetic material between samples in this population. The performance of the resulting evolutionary filtering algorithms is demonstrated in two different settings. In the first, both group and target properties are estimated whereas in the second, which consists of a very large number of targets, only the clustering structure is maintained. © 2009 IFAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel framework for identifying and tracking dominant agents in groups. Our proposed approach relies on a causality detection scheme that is capable of ranking agents with respect to their contribution in shaping the system's collective behaviour based exclusively on the agents' observed trajectories. Further, the reasoning paradigm is made robust to multiple emissions and clutter by employing a class of recently introduced Markov chain Monte Carlo-based group tracking methods. Examples are provided that demonstrate the strong potential of the proposed scheme in identifying actual leaders in swarms of interacting agents and moving crowds. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel filtering algorithm for tracking multiple clusters of coordinated objects. Based on a Markov chain Monte Carlo (MCMC) mechanism, the new algorithm propagates a discrete approximation of the underlying filtering density. A dynamic Gaussian mixture model is utilized for representing the time-varying clustering structure. This involves point process formulations of typical behavioral moves such as birth and death of clusters as well as merging and splitting. For handling complex, possibly large scale scenarios, the sampling efficiency of the basic MCMC scheme is enhanced via the use of a Metropolis within Gibbs particle refinement step. As the proposed methodology essentially involves random set representations, a new type of estimator, termed the probability hypothesis density surface (PHDS), is derived for computing point estimates. It is further proved that this estimator is optimal in the sense of the mean relative entropy. Finally, the algorithm's performance is assessed and demonstrated in both synthetic and realistic tracking scenarios. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a Bayesian probabilistic framework to assess soil properties and model uncertainty to better predict excavation-induced deformations using field deformation data. The potential correlations between deformations at different depths are accounted for in the likelihood function needed in the Bayesian approach. The proposed approach also accounts for inclinometer measurement errors. The posterior statistics of the unknown soil properties and the model parameters are computed using the Delayed Rejection (DR) method and the Adaptive Metropolis (AM) method. As an application, the proposed framework is used to assess the unknown soil properties of multiple soil layers using deformation data at different locations and for incremental excavation stages. The developed approach can be used for the design of optimal revisions for supported excavation systems. © 2010 ASCE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

State-space models are successfully used in many areas of science, engineering and economics to model time series and dynamical systems. We present a fully Bayesian approach to inference and learning (i.e. state estimation and system identification) in nonlinear nonparametric state-space models. We place a Gaussian process prior over the state transition dynamics, resulting in a flexible model able to capture complex dynamical phenomena. To enable efficient inference, we marginalize over the transition dynamics function and, instead, infer directly the joint smoothing distribution using specially tailored Particle Markov Chain Monte Carlo samplers. Once a sample from the smoothing distribution is computed, the state transition predictive distribution can be formulated analytically. Our approach preserves the full nonparametric expressivity of the model and can make use of sparse Gaussian processes to greatly reduce computational complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colheita pelo método de sucção. Etapas da colheita. Vantagens do método. Desvantagens do método.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introdução; Objetivo e escopo do projeto; Diagnóstico obtido; Confronto falha x ação de melhoria; Plano de melhoria - propostas preliminares; Ações futuras; Conclusões; Referências bibliográficas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tecnologia de sensoriamento remoto é uma das mais importantes fontes de informação para subsídios na identificação e no monitoramento de mudanças na cobertura da Terra. Objeto dessa tecnologia, a classificação supervisionada, por meio do algoritmo da máxima verossimilhança, tem sido um dos métodos mais utilizados para a extração de informações, principalmente em imagens de média resolução espacial. Utilizando parâmetros estatísticos, esse algoritmo pressupõe a ponderação das distâncias entre as médias dos níveis digitais das classes. Este trabalho objetivou a aplicação desse algoritmo em imagem de satélite de alta resolução. Para isso, foi necessário minimizar a intensidade de informações disponibilizadas por esses sensores, alterando a resolução espacial para 4 m e a radiométrica para 8 bit e, ainda, fazer uma filtragem pós-processamento. O presente trabalho, parte integrante de um projeto de monitoramento orbital de grandes obras de engenharia em infraestrutura, avaliou um método para a extração de informações para o monitoramento dessas obras, inseridas em meio rural ou urbano. A finalidade desse procedimento é subsidiar a análise da dinâmica de desenvolvimento dessas obras em relação a situações precedentes, assim como a possíveis intervenções no seu entorno. O projeto de monitoramento dessas obras utiliza imagens de satélites de vários sensores de alta resolução espacial, captadas em diferentes datas. No entanto, a aplicação do método apresentado neste trabalho exemplifica a utilização de imagem do satélite Ikonos 2 em uma única data. Para a imagem Ikonos 2, foi obtido um índice Kappa geral de 0,84 e apenas a classe caracterizada como Pastagem apresentou concordância relativamente mais baixa (0,71) em comparação a outras classes, mas ainda assim considerada uma boa classificação. Diante disso, a padronização proposta com a finalidade de minimizar as informações em imagens de alta resolução juntamente com o algoritmo da máxima verossimilhança e a posterior filtragem mostraram-se eficientes como suporte para a avaliação da ocupação das terras tomadas pelas obras (área de influência direta) e do seu entorno.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho foi avaliado o método de incubações anaeróbias para determinação da fração de mineralização de N de lodos de esgoto aplicados em solos, visando-se avaliar a eficiência e o grau de associação desse método, mais simples e mais rápido, em relação ao método de incubações aeróbias.