990 resultados para Linear degenerate elliptic equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apresentamos um novo método de inversão linear bidimensional de dados gravimétricos produzidos por bacias sedimentares com relevo do embasamento descontínuo. O método desenvolvido utiliza um modelo interpretativo formado por um conjunto de fitas horizontais bidimensionais justapostas cujas espessuras são os parâmetros a serem estimados. O contraste de densidade entre o embasamento e os sedimentos é presumido constante e conhecido. As estimativas das espessuras foram estabilizadas com o funcional da Variação Total (VT) que permite soluções apresentando descontinuidades locais no relevo do embasamento. As estimativas do relevo são obtidas através da resolução de um sistema de equações lineares, resolvido na norma L1. Como métodos lineares subestimam as estimativas de profundidade do embasamento de bacias maiores que cerca de 500 m, amplificamos as estimativas de profundidade através da modificação da matriz associada ao modelo interpretativo de fitas. As estimativas obtidas através deste procedimento são em geral ligeiramente superestimadas. Desse modo, elas são corrigidas através de uma correção definida pela expressão da placa Bouguer. Testes em dados sintéticos e reais produziram resultados comparáveis aos produzidos pelo método não linear, mas exigiram menor tempo computacional. A razão R entre os tempos exigidos pelo método não linear e o método proposto cresce com o número de observações e parâmetros. Por exemplo, para 60 observações e 60 parâmetros, R é igual a 4, enquanto para 2500 observações e 2500 parâmetros R cresce para 16,8. O método proposto e o método de inversão não linear foram aplicados também em dados reais do Steptoe Valley, Nevada, Estados Unidos, e da ponte do POEMA, no Campus do Guamá em Belém, produzindo soluções similares às obtidas com o método não linear exigindo menor tempo computacional.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pH values near a planar dissociating membrane are studied under a mean field approximation using the Poisson-Boltzmann equation and its linear form. The equations are solved in planar symmetry with the consideration that the charge density on the dissociating membrane surface results from an equilibrium process with the neighboring electrolyte. Results for the membrane dissociation degree are presented as a function of the electrolyte ionic strength and membrane surface charge density. Our calculations indicate that pH values have an appreciable variation within 2 nm from the membrane. It is shown that the dissociation process is enhanced due to the presence of bivalent ions and that pH values acquire better stability than in an electrolyte containing univalent ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to obtain a mathematical equation to estimate the leaf area of Panicum maximum using linear measures of leaf blade. Correlation studies were conducted involving the real leaf area (Sf), the main vein leaf length (C), and the maximum leaf width (L). The linear and geometric equations related to C provided good leaf area estimates. For practical reasons, the use of an equation involving only the C*L product is suggested. Thus, an estimate of P. maximum leaf area can be obtained by the equation Sf = 0.6058 (C*L), with the coefficient of determination R = 0.8586.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to analyze the stability of the rotational motion’s artificial satellite using the Routh Hurwitz Algorithm (CRH) and the quaternions to describe the satellite’s attitude. This algorithm allows the investigation of the stability of the motion using the coefficients of the characteristic equation associated with the equation of the rotational motion in the linear form. The equations of the rotational motion are given by the four cinematic equations for the quaternion and the three equations of Euler for the spin velocity’s components. In the Euler equations are included the components of the gravity gradient torque (TGG) and the solar radiation torque (TRS). The TGG is generated by the difference of the Earth gravity force direction and intensity actuating on each satellite mass element and it depends on the mass distribution and the form of the satellite. The TRS is created by changing of the linear momentum, which happens due to the interactions of solar photons with the satellite surface. The equilibrium points are gotten by the equation of rotational motion and the CRH is applied in the linear form of these equations. Simulations are developed for small and medium satellites, but the gotten equilibrium points are not stable by CRH. However, when some of the eigenvalues of the characteristic equation are analyzed, it is found some equilibrium points which can be pointed out as stables for an interval of the time, due to small magnitude of the real part of these eigenvalue

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a methodology for solving a linear system of equations on vector computer. The methodology combines direct and inverse factors. The decomposition and implementation of the direct solution in a CRAY Y-MPZE/232, and the performance results are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática em Rede Nacional - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interfacial concentrations of chloride and bromide ions, with Li+, Na+, K+, Rb+, Cs+, trimethylammonium (TMA(+)), Ca2+, and Mg2+ as counterions, were determined by chemical trapping in micelles formed by two zwitterionic surfactants, namely N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and hexadecylphosphorylcholine (HDPC) micelles. Appropriate standard curves for the chemical trapping method were obtained by measuring the product yields of chloride and bromide salts with 2,4,6-trimethyl-benzenediazonium (BF4) in the presence of low molecular analogs (N,N,N-trimethyl-propane sulfonate and methyl-phosphorylcholine) of the employed surfactants. The experimentally determined values for the local Br- (Cl-) concentrations were modeled by fully integrated non-linear Poisson Boltzmann equations. The best fits to all experimental data were obtained by considering that ions at the interface are not fixed at an adsorption site but are free to move in the interfacial plane. In addition, the calculation of ion distribution allowed the estimation of the degree of ion coverage by using standard chemical potential differences accounting for ion specificity. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit werden zwei physikalischeFließexperimente an Vliesstoffen untersucht, die dazu dienensollen, unbekannte hydraulische Parameter des Materials, wiez. B. die Diffusivitäts- oder Leitfähigkeitsfunktion, ausMeßdaten zu identifizieren. Die physikalische undmathematische Modellierung dieser Experimente führt auf einCauchy-Dirichlet-Problem mit freiem Rand für die degeneriertparabolische Richardsgleichung in derSättigungsformulierung, das sogenannte direkte Problem. Ausder Kenntnis des freien Randes dieses Problems soll dernichtlineare Diffusivitätskoeffizient derDifferentialgleichung rekonstruiert werden. Für diesesinverse Problem stellen wir einOutput-Least-Squares-Funktional auf und verwenden zu dessenMinimierung iterative Regularisierungsverfahren wie dasLevenberg-Marquardt-Verfahren und die IRGN-Methode basierendauf einer Parametrisierung des Koeffizientenraumes durchquadratische B-Splines. Für das direkte Problem beweisen wirunter anderem Existenz und Eindeutigkeit der Lösung desCauchy-Dirichlet-Problems sowie die Existenz des freienRandes. Anschließend führen wir formal die Ableitung desfreien Randes nach dem Koeffizienten, die wir für dasnumerische Rekonstruktionsverfahren benötigen, auf einlinear degeneriert parabolisches Randwertproblem zurück.Wir erläutern die numerische Umsetzung und Implementierungunseres Rekonstruktionsverfahrens und stellen abschließendRekonstruktionsergebnisse bezüglich synthetischer Daten vor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wird die Faktorisierungsmethode zur Erkennung von Gebieten mit sprunghaft abweichenden Materialparametern untersucht. Durch eine abstrakte Formulierung beweisen wir die der Methode zugrunde liegende Bildraumidentität für allgemeine reelle elliptische Probleme und deduzieren bereits bekannte und neue Anwendungen der Methode. Für das spezielle Problem, magnetische oder perfekt elektrisch leitende Objekte durch niederfrequente elektromagnetische Strahlung zu lokalisieren, zeigen wir die eindeutige Lösbarkeit des direkten Problems für hinreichend kleine Frequenzen und die Konvergenz der Lösungen gegen die der elliptischen Gleichungen der Magnetostatik. Durch Anwendung unseres allgemeinen Resultats erhalten wir die eindeutige Rekonstruierbarkeit der gesuchten Objekte aus elektromagnetischen Messungen und einen numerischen Algorithmus zur Lokalisierung der Objekte. An einem Musterproblem untersuchen wir, wie durch parabolische Differentialgleichungen beschriebene Einschlüsse in einem durch elliptische Differentialgleichungen beschriebenen Gebiet rekonstruiert werden können. Dabei beweisen wir die eindeutige Lösbarkeit des zugrunde liegenden parabolisch-elliptischen direkten Problems und erhalten durch eine Erweiterung der Faktorisierungsmethode die eindeutige Rekonstruierbarkeit der Einschlüsse sowie einen numerischen Algorithmus zur praktischen Umsetzung der Methode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this dissertation is to prove that the Dirichlet problem in a bounded domain is uniquely solvable for elliptic equations in divergence form. The proof can be achieved by Hilbert space methods based on generalized or weak solutions. Existence and uniqueness of a generalized solution for the Dirichlet problem follow from the Fredholm alternative and weak maximum principle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. In particular, when the involved kernel is analytic in the sampling parameter it can be stated in an abstract setting of reproducing kernel Hilbert spaces of entire functions which includes as a particular case the classical Shannon sampling theory. This abstract setting allows us to obtain a sort of converse result and to characterize when the sampling formula associated with an analytic Kramer kernel can be expressed as a Lagrange-type interpolation series. On the other hand, the de Branges spaces of entire functions satisfy orthogonal sampling formulas which can be written as Lagrange-type interpolation series. In this work some links between all these ideas are established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a new two-dimensional analytic optics design method is presented that enables the coupling of three ray sets with two lens profiles. This method is particularly promising for optical systems designed for wide field of view and with clearly separated optical surfaces. However, this coupling can only be achieved if different ray sets will use different portions of the second lens profile. Based on a very basic example of a single thick lens, the Simultaneous Multiple Surfaces design method in two dimensions (SMS2D) will help to provide a better understanding of the practical implications on the design process by an increased lens thickness and a wider field of view. Fermat?s principle is used to deduce a set of functional differential equations fully describing the entire optical system. The transformation of these functional differential equations into an algebraic linear system of equations allows the successive calculation of the Taylor series coefficients up to an arbitrary order. The evaluation of the solution space reveals the wide range of possible lens configurations covered by this analytic design method. Ray tracing analysis for calculated 20th order Taylor polynomials demonstrate excellent performance and the versatility of this new analytical optics design concept.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The boundary element method (BEM) has been applied successfully to many engineering problems during the last decades. Compared with domain type methods like the finite element method (FEM) or the finite difference method (FDM) the BEM can handle problems where the medium extends to infinity much easier than domain type methods as there is no need to develop special boundary conditions (quiet or absorbing boundaries) or infinite elements at the boundaries introduced to limit the domain studied. The determination of the dynamic stiffness of arbitrarily shaped footings is just one of these fields where the BEM has been the method of choice, especially in the 1980s. With the continuous development of computer technology and the available hardware equipment the size of the problems under study grew and, as the flop count for solving the resulting linear system of equations grows with the third power of the number of equations, there was a need for the development of iterative methods with better performance. In [1] the GMRES algorithm was presented which is now widely used for implementations of the collocation BEM. While the FEM results in sparsely populated coefficient matrices, the BEM leads, in general, to fully or densely populated ones, depending on the number of subregions, posing a serious memory problem even for todays computers. If the geometry of the problem permits the surface of the domain to be meshed with equally shaped elements a lot of the resulting coefficients will be calculated and stored repeatedly. The present paper shows how these unnecessary operations can be avoided reducing the calculation time as well as the storage requirement. To this end a similar coefficient identification algorithm (SCIA), has been developed and implemented in a program written in Fortran 90. The vertical dynamic stiffness of a single pile in layered soil has been chosen to test the performance of the implementation. The results obtained with the 3-d model may be compared with those obtained with an axisymmetric formulation which are considered to be the reference values as the mesh quality is much better. The entire 3D model comprises more than 35000 dofs being a soil region with 21168 dofs the biggest single region. Note that the memory necessary to store all coefficients of this single region is about 6.8 GB, an amount which is usually not available with personal computers. In the problem under study the interface zone between the two adjacent soil regions as well as the surface of the top layer may be meshed with equally sized elements. In this case the application of the SCIA leads to an important reduction in memory requirements. The maximum memory used during the calculation has been reduced to 1.2 GB. The application of the SCIA thus permits problems to be solved on personal computers which otherwise would require much more powerful hardware.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a new and computationally efficient method of analysis of a railway track modelled as a continuous beam of 2N spans supported by elastic vertical springs. The main feature of this method is its important reduction in computational effort with respect to standard matrix methods of structural analysis. In this article, the whole structure is considered to be a repetition of a single one. The analysis presented is applied to a simple railway track model, i.e. to a repetitive beam supported on vertical springs (sleepers). The proposed method of analysis is based on the general theory of spatially periodic structures. The main feature of this theory is the possibility to apply Discrete Fourier Transform (DFT) in order to reduce a large system of q(2N + 1) linear stiffness equilibrium equations to a set of 2N + 1 uncoupled systems of q equations each. In this way, a dramatic reduction of the computational effort of solving the large system of equations is achieved. This fact is particularly important in the analysis of railway track structures, in which N is a very large number (around several thousands), and q = 2, the vertical displacement and rotation, is very small. The proposed method allows us to easily obtain the exact solution given by Samartín [1], i.e. the continuous beam railway track response. The comparison between the proposed method and other methods of analysis of railway tracks, such as Lorente de Nó and Zimmermann-Timoshenko, clearly shows the accuracy of the obtained results for the proposed method, even for low values of N. In addition, identical results between the proposed and the Lorente methods have been found, although the proposed method seems to be of simpler application and computationally more efficient than the Lorente one. Small but significative differences occur between these two methods and the one developed by Zimmermann-Timoshenko. This article also presents a detailed sensitivity analysis of the vertical displacement of the sleepers. Although standard matrix methods of structural analysis can handle this railway model, one of the objectives of this article is to show the efficiency of DFT method with respect to standard matrix structural analysis. A comparative analysis between standard matrix structural analysis and the proposed method (DFT), in terms of computational time, input, output and also software programming, will be carried out. Finally, a URL link to a MatLab computer program list, based on the proposed method, is given

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A non-local gradient-based damage formulation within a geometrically non-linear setting is presented. The hyperelastic constitutive response at local material point level is governed by a strain energy which is additively composed of an isotropic matrix and of an anisotropic fibre-reinforced material, respectively. The inelastic constitutive response is governed by a scalar [1–d]-type damage formulation, where only the anisotropic elastic part is assumed to be affected by the damage. Following the concept in Dimitrijević and Hackl [28], the local free energy function is enhanced by a gradient-term. This term essentially contains the gradient of the non-local damage variable which, itself, is introduced as an additional independent variable. In order to guarantee the equivalence between the local and non-local damage variable, a penalisation term is incorporated within the free energy function. Based on the principle of minimum total potential energy, a coupled system of Euler–Lagrange equations, i.e., the balance of linear momentum and the balance of the non-local damage field, is obtained and solved in weak form. The resulting coupled, highly non-linear system of equations is symmetric and can conveniently be solved by a standard incremental-iterative Newton–Raphson-type solution scheme. Several three-dimensional displacement- and force-driven boundary value problems—partially motivated by biomechanical application—highlight the mesh-objective characteristics and constitutive properties of the model and illustratively underline the capabilities of the formulation proposed