Gebietserkennung mit der Faktorisierungsmethode


Autoria(s): Gebauer, Bastian
Data(s)

2006

Resumo

In der vorliegenden Arbeit wird die Faktorisierungsmethode zur Erkennung von Gebieten mit sprunghaft abweichenden Materialparametern untersucht. Durch eine abstrakte Formulierung beweisen wir die der Methode zugrunde liegende Bildraumidentität für allgemeine reelle elliptische Probleme und deduzieren bereits bekannte und neue Anwendungen der Methode. Für das spezielle Problem, magnetische oder perfekt elektrisch leitende Objekte durch niederfrequente elektromagnetische Strahlung zu lokalisieren, zeigen wir die eindeutige Lösbarkeit des direkten Problems für hinreichend kleine Frequenzen und die Konvergenz der Lösungen gegen die der elliptischen Gleichungen der Magnetostatik. Durch Anwendung unseres allgemeinen Resultats erhalten wir die eindeutige Rekonstruierbarkeit der gesuchten Objekte aus elektromagnetischen Messungen und einen numerischen Algorithmus zur Lokalisierung der Objekte. An einem Musterproblem untersuchen wir, wie durch parabolische Differentialgleichungen beschriebene Einschlüsse in einem durch elliptische Differentialgleichungen beschriebenen Gebiet rekonstruiert werden können. Dabei beweisen wir die eindeutige Lösbarkeit des zugrunde liegenden parabolisch-elliptischen direkten Problems und erhalten durch eine Erweiterung der Faktorisierungsmethode die eindeutige Rekonstruierbarkeit der Einschlüsse sowie einen numerischen Algorithmus zur praktischen Umsetzung der Methode.

In this work we study the Factorization Method for detecting inclusions in a domain where the material parameters of the inclusions significantly differ from that of the rest of the domain. The method is based on a range identity. Using an abstract formulation we prove that this identity holds for general real elliptic problems and deduce some known as well as new applications for the method. For the special problem of locating magnetic or perfectly conducting objects by low-frequency electromagnetic scattering we show the unique solvability of the direct problem for small frequencies and the convergence of the solutions to that of the elliptic equations of magnetostatics. Using our general result for the Factorization Method we obtain the unique reconstructibility of the objects from electromagnetic measurements and a numerical algorithm for locating the objects. On a sample problem we study how inclusions that are described by a parabolic differential equation can be located in a domain described by an elliptic differential equation. We prove the unique solvability of the underlying parabolic-elliptic problem and by an extension of the Factorization Method we obtain the unique reconstructibility of the inclusions and a numerical algorithm for the practical implementation of the method.

Formato

application/pdf

Identificador

urn:nbn:de:hebis:77-11370

http://ubm.opus.hbz-nrw.de/volltexte/2006/1137/

Idioma(s)

ger

Publicador

08: Physik, Mathematik und Informatik. 08: Physik, Mathematik und Informatik

Direitos

http://ubm.opus.hbz-nrw.de/doku/urheberrecht.php

Palavras-Chave #Inverse Probleme #inverse problems #Mathematics
Tipo

Thesis.Doctoral