971 resultados para LEVEL TRANSIENT SPECTROSCOPY
Resumo:
Electrical measurements have been performed on poly[2-methoxy, 5 ethyl (2' hexyloxy) paraphenylenevinylene] in a pn junction with silicon. These included current-voltage measurements, capacitance-voltage measurements, capacitance-transient spectroscopy, and admittance spectroscopy. The measurements show evidence for large minority-carrier injection into the polymer possibly enabled by interface states for which evidence is also found. The shallow acceptor level depth (0.12 eV) and four deep trap level activation energies (0.30 and 1.0 eV majority-carrier type; 0.48 and 1.3 eV minority-carrier type) are found. Another trap that is visible at room temperature has point-defect nature. (C) 2001 American Institute of Physics.
De Novo Transcriptome Sequence Assembly and Analysis of RNA Silencing Genes of Nicotiana benthamiana
Resumo:
Background: Nicotiana benthamiana has been widely used for transient gene expression assays and as a model plant in the study of plant-microbe interactions, lipid engineering and RNA silencing pathways. Assembling the sequence of its transcriptome provides information that, in conjunction with the genome sequence, will facilitate gaining insight into the plant's capacity for high-level transient transgene expression, generation of mobile gene silencing signals, and hyper-susceptibility to viral infection. Methodology/Results: RNA-seq libraries from 9 different tissues were deep sequenced and assembled, de novo, into a representation of the transcriptome. The assembly, of16GB of sequence, yielded 237,340 contigs, clustering into 119,014 transcripts (unigenes). Between 80 and 85% of reads from all tissues could be mapped back to the full transcriptome. Approximately 63% of the unigenes exhibited a match to the Solgenomics tomato predicted proteins database. Approximately 94% of the Solgenomics N. benthamiana unigene set (16,024 sequences) matched our unigene set (119,014 sequences). Using homology searches we identified 31 homologues that are involved in RNAi-associated pathways in Arabidopsis thaliana, and show that they possess the domains characteristic of these proteins. Of these genes, the RNA dependent RNA polymerase gene, Rdr1, is transcribed but has a 72 nt insertion in exon1 that would cause premature termination of translation. Dicer-like 3 (DCL3) appears to lack both the DEAD helicase motif and second dsRNA binding motif, and DCL2 and AGO4b have unexpectedly high levels of transcription. Conclusions: The assembled and annotated representation of the transcriptome and list of RNAi-associated sequences are accessible at www.benthgenome.com alongside a draft genome assembly. These genomic resources will be very useful for further study of the developmental, metabolic and defense pathways of N. benthamiana and in understanding the mechanisms behind the features which have made it such a well-used model plant. © 2013 Nakasugi et al.
Resumo:
Virus-based transgene expression systems have become particularly valuable for recombinant protein production in plants. The dual-module in-plant activation (INPACT) expression platform consists of a uniquely designed split-gene cassette incorporating the cis replication elements of Tobacco yellow dwarf geminivirus (TYDV) and an ethanol-inducible activation cassette encoding the TYDV Rep and RepA replication-associated proteins. The INPACT system is essentially tailored for recombinant protein production in stably transformed plants and provides both inducible and high-level transient transgene expression with the potential to be adapted to diverse crop species. The construction of a novel split-gene cassette, the inducible nature of the system and the ability to amplify transgene expression via rolling-circle replication differentiates this system from other DNA- and RNA-based virus vector systems used for stable or transient recombinant protein production in plants. Here we provide a detailed protocol describing the design and construction of a split-gene INPACT cassette, and we highlight factors that may influence optimal activation and amplification of gene expression in transgenic plants. By using Nicotiana tabacum, the protocol takes 6-9 months to complete, and recombinant proteins expressed using INPACT can accumulate to up to 10% of the leaf total soluble protein.
Resumo:
High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN film grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Ultra thin films of pure silicon nitride were grown on a Si (1 1 1) surface by exposing the surface to radio-frequency (RF) nitrogen plasma with a high content of nitrogen atoms. The effect of annealing of silicon nitride surface was investigated with core-level photoelectron spectroscopy. The Si 2p photoelectron spectra reveals a characteristic series of components for the Si species, not only in stoichiometric Si3N4 (Si4+) but also in the intermediate nitridation states with one (Si1+) or three (Si3+) nitrogen nearest neighbors. The Si 2p core-level shifts for the Si1+, Si3+, and Si4+ components are determined to be 0.64, 2.20, and 3.05 eV, respectively. In annealed sample it has been observed that the Si4+ component in the Si 2p spectra is significantly improved, which clearly indicates the crystalline nature of silicon nitride. The high resolution X-ray diffraction (HRXRD), scanning electron microscopy (SEM) and photoluminescence (PL) studies showed a significant improvement of the crystalline qualities and enhancement of the optical properties of GaN grown on the stoichiometric Si3N4 by molecular beam epitaxy (MBE). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Phase pure wurtzite GaN films were grown on Si (100) substrates by introducing a silicon nitride layer followed by low temperature GaN growth as buffer layers. GaN films grown directly on Si (100) were found to be phase mixtured, containing both cubic (beta) and hexagonal (alpha) modifications. The x-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN films grown with silicon nitride buffer layer grown at 800 degrees C when compared to the samples grown in the absence of silicon nitride buffer layer and with silicon nitride buffer layer grown at 600 degrees C. Core-level photoelectron spectroscopy of Si(x)N(y) layers reveals the sources for superior qualities of GaN epilayers grown with the high temperature substrate nitridation process. The discussion has been carried out on the typical inverted rectification behavior exhibited by n-GaN/p-Si heterojunctions. Considerable modulation in the transport mechanism was observed with the nitridation conditions. The heterojunction fabricated with the sample of substrate nitridation at high temperature exhibited superior rectifying nature with reduced trap concentrations. Lowest ideality factors (similar to 1.5) were observed in the heterojunctions grown with high temperature substrate nitridation which is attributed to the recombination tunneling at the space charge region transport mechanism at lower voltages and at higher voltages space charge limited current conduction is the dominating transport mechanism. Whereas, thermally generated carrier tunneling and recombination tunneling are the dominating transport mechanisms in the heterojunctions grown without substrate nitridation and low temperature substrate nitridation, respectively. (C) 2011 American Institute of Physics. [doi:10.1063/1.3658867]
Resumo:
Nanocrystalline Zn0.95-xNi0.05AlxO (x = 0.01, 0.02, 0.05 and 0.10) diluted magnetic semiconductors have been synthesized by an autocombustion method. X-ray absorption spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectrometry and Ni 2p core-level photoemission spectroscopy analyses revealed that some of the nickel ions were substituted for Zn2+ into the ZnO matrix while others gave birth to NiO nanoclusters embedded in the ZnO particles. The Zn0.95Ni0.05O sample showed no enhancement of room-temperature ferromagnetism after Al doping. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The fabrication of flexible multilayer graphene oxide (GO) membrane and carbon nanotubes (CNTs) using a rare form of high-purity natural graphite, vein graphite, is reported for the first time. Graphite oxide is synthesized using vein graphite following Hummer's method. By facilitating functionalized graphene sheets in graphite oxide to self-assemble, a multilayer GO membrane is fabricated. Electric arc discharge is used to synthesis CNTs from vein graphite. Both multilayer GO membrane and CNTs are investigated using microscopy and spectroscopy experiments, i.e., scanning electron microscopy (SEM), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), core level photoelectron spectroscopy, and C K-edge X-ray absorption spectroscopy (NEXAFS), to characterize their structural and topographical properties. Characterization of vein graphite using different techniques reveals that it has a large number of crystallites, hence the large number of graphene sheets per crystallite, preferentially oriented along the (002) plane. NEXAFS and core level spectra confirm that vein graphite is highly crystalline and pure. Fourier transform infrared (FT-IR) and C 1s core level spectra show that oxygen functionalities (-C-OH, -CO,-C-O-C-) are introduced into the basal plane of graphite following chemical oxidation. Carbon nanotubes are produced from vein graphite through arc discharge without the use of any catalyst. HRTEM confirm that multiwalled carbon nanotube (MWNTs) are produced with the presence of some structure in the central pipe. A small percentage of single-walled nanotubes (SWNTs) are also produced simultaneously with MWNTs. Spectroscopic and microscopic data are further discussed here with a view to using vein graphite as the source material for the synthesis of carbon nanomaterials. © 2013 American Chemical Society.
Resumo:
Nickel-doped ZnO (Zn1-xNixO) have been produced using rf magnetron sputtering. X-ray diffraction measurements revealed that nickel atoms were successfully incorporated into ZnO host matrix without forming any detectable secondary phase. Ni 2p core-level photoemission spectroscopy confirmed this result and suggested Ni hits it chemical valence of 2 +. According to the . We studied the electronic magnetization measurements, no ferromagnetic but paramagnetic behavior was found for Zn0.86Ni0.14O. We studied the electronic structure of Zn0.86Ni0.14O by valence-band photoemission spectroscopy. The spectra demonstrate a structure at similar to 2 eV below the Fermi energy E-F, which is of Ni 3d origin. No emission was found at E-A, suggesting the insulating nature of the film. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Unusual dark current voltage (I-V) characteristics were observed in GaN Schottky diodes. I-V characteristics of the GaN Schottky diodes were measured down to the magnitude of 10(-14) A. Although these Schottky diodes were clearly rectifying, their I-V characteristics were non-ideal which can be judged from the non-linearity in the semi-logarithmic plots. Careful analysis of the forward bias I-V characteristics on log-log scale indicates space-charge-limited current (SCLC) conduction dominates the current transport in these GaN Schottky diodes. The concentration of the deep trapping centers was estimated to be higher than 10(15) cm(-3). In the deep level transient spectra (DLTS) measurements for the GaN Schottky diodes, deep defect levels around 0.20 eV below the bottom of the conduction band were identified, which may act as the trapping centers. The concentration of the deep centers obtained from the DLTS data is about 5 x 10(15) cm(-3). SCLC measurements may be used to probe the properties of deep levels in wide bandgap GaN-AlGaN compound semiconductors, as is the case with insulators in the presence of trapping centers. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Semi-insulating (SI) InP wafers of 2 and 3 in. diameters have been prepared by annealing undoped LEC InP at 930 degreesC for 80 h under pure phosphorus ambient (PP) and iron phosphide ambient (IP). The electrical uniformity of annealed undoped SI wafers, along with a Fe-doped as-grown SI LEC InP wafer, has been characterized by whole wafer PL mapping and radial Hall measurements. Defects in these wafers have been detected by photo-induced current transient spectroscopy (PICTS). The results indicated that the uniformity of IP wafer is much better than that of PP wafer and as-grown Fe-doped Si InP wafer. There are fewer traps in undoped SI InP IP wafer than in as grown Fe-doped and undoped SI InP PP wafer, as evidenced by PICTS. The good uniformity of the IP wafer is related to the nonexistence of high concentration of thermally induced defects. The mechanism for this phenomenon is discussed based on the results. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The effect of molecular nitrogen exposure on the InP(100) surface modified by the alkali metal K overlayer is investigated by core-level photoemission spectroscopy using synchrotron radiation. The alkali metal covered surface exhibits reasonable nitrogen uptake at room temperature, and results in the formation of a P3N5 nitride complex. Flash annealing at 400 degrees C greatly enhanced the formation of this kind of nitride complex. Above 500 degrees C, the nitride complex dissolved completely. (C) 1997 American Vacuum Society.
Resumo:
Semi-insulating (SI) InP wafers of 2 and 3 in. diameters have been prepared by annealing undoped LEC InP at 930 degreesC for 80 h under pure phosphorus ambient (PP) and iron phosphide ambient (IP). The electrical uniformity of annealed undoped SI wafers, along with a Fe-doped as-grown SI LEC InP wafer, has been characterized by whole wafer PL mapping and radial Hall measurements. Defects in these wafers have been detected by photo-induced current transient spectroscopy (PICTS). The results indicated that the uniformity of IP wafer is much better than that of PP wafer and as-grown Fe-doped Si InP wafer. There are fewer traps in undoped SI InP IP wafer than in as grown Fe-doped and undoped SI InP PP wafer, as evidenced by PICTS. The good uniformity of the IP wafer is related to the nonexistence of high concentration of thermally induced defects. The mechanism for this phenomenon is discussed based on the results. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Since its discovery in 1922, vitamin E has been widely investigated for its role as a powerful, chain-breaking antioxidant that is required for human health. However, some basic issues still remain unclear, such as the mechanism and dynamics of the intracellular trafficking of a-tocopherol. To better understand tocopherol's biological activity at the cellular level, fluorescence spectroscopy and microscopy have been found to be valuable tools. This thesis reports the synthesis of a new fluorescent analogue of a-tocopherol, atocohexaenol, an intrinsically fluorescent analogue of a-tocopherol. Different methodologies of preparation have been attempted and a strategy using a preformed chromanol head plus ClO and Cs portion of the polyene side chain finally provided us the desired a-tocohexaenol. a-Tocohexaenol shows a strong fluorescence in both ethanol and hexanes with maximum Aab = 368 nm and maximum /...em = 521 nm. This compound is stable for a couple of weeks in ethanol or hexane solution if stored at 0 °C and protected form light. It decomposes slowly at room temperature and light will accelerate its decomposition (within 5 hours). Thus, a-Tocohexaenol may be a useful fluorescent probe to study the biochemistry and cell biology of vitamin E.
Resumo:
We discuss the modelling of dielectric responses of amorphous biological samples. Such samples are commonly encountered in impedance spectroscopy studies as well as in UV, IR, optical and THz transient spectroscopy experiments and in pump-probe studies. In many occasions, the samples may display quenched absorption bands. A systems identification framework may be developed to provide parsimonious representations of such responses. To achieve this, it is appropriate to augment the standard models found in the identification literature to incorporate fractional order dynamics. Extensions of models using the forward shift operator, state space models as well as their non-linear Hammerstein-Wiener counterpart models are highlighted. We also discuss the need to extend the theory of electromagnetically excited networks which can account for fractional order behaviour in the non-linear regime by incorporating nonlinear elements to account for the observed non-linearities. The proposed approach leads to the development of a range of new chemometrics tools for biomedical data analysis and classification.