430 resultados para Kohn, AbrahamKohn, AbrahamAbrahamKohn


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compositional distribution of the quantum well and barrier after quantum well intermixing for GaInP/AlGaInP system was theoretically analyzed on the basis of atom diffusion law. With the compositional distribution result, the valence subband structure of the intermixed quantum well was calculated on the basis of 6x6 Luttinger-Kohn Hamiltonian, including spin-orbit splitting effects. TO get more accurate results in the calculation, a full 6-band problem was solved without axial approximation, which had been widely used in the Luttinger-Kohn model to simplify the computational efforts, since there was a strong warping in the GaInP valence band. At last, the bandgap energy of the intermixed quantum well was obtained and the calculation result is of much importance in the analysis of quantum well intermixing experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Usually in the calculation of valence subband structure for III-V direct bandgap material, axial approximation had been used in the Luttinger-Kohn model to simplify the computational efforts. In this letter, the valence subband structure for the GaInP/AlGaInP strained and lattice-matched quantum wells was calculated without axial approximation, on the basis of 6x6 Luttinger-Kohn Hamiltonian including strain and spin-orbit splitting effects. The numerical simulation results were presented with help of the finite-difference methods. The calculation results with/without axial approximation were compared and the effect of axial approximation on the valence subband structure was discussed in detail. The results indicated that there was a strong warping in the GaInP valence band, and axial approximation can lead to an error when k was not equal to zero, especially for compressively strained and lattice-matched GaInP/AlGaInP quantum wells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polarization-insensitive semiconductor optical amplifiers (SOA's) with tensile-strained multi-quantum-wells as actice regions are designed and fabricated. The 6x6 Luttinger-Kohn model and Bir-Pikus Hamiltonian are employed to calculate the valence subband structures of strained quantum wells, and then a Lorentzian line-shape function is combined to calculate the material gain spectra for TE and TM modes. The device structure for polarization insensitive SOA is designed based on the materialde gain spectra of TE and TM modes and the gain factors for multilayer slab waveguide. Based on the designed structure parameters, we grow the SOA wafer by MOCVD and get nearly magnitude of output power for TE and TM modes from the broad-area semiconductor lasers fabricated from the wafer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past decade density functional theory (DFT) has made its way from a peripheral position in quantum chemistry to center. Of course the often excellent accuracy of the DFT based methods has provided the primary driving force of this development. This dissertation is devoted to the study of physical and chemical properties of planetary materials by first-principle calculation. The concerned properties include the geometry, elastic constants and anisotropy. In the first chapter, we give a systematic introduction to theoretical background and review its progress. Development of quantum chemistry promotes the establishment of DFT. Theorem of Hohenberg-Kohn is the fundament of DFT and is developed to Kohn-Sham equation, which can be used to perform real calculations. Now, new corrections and extensions, together with developed exchange-correlation, have made DFT more accurate and suitable for larger systems. In the second chapter, we focus on the calculational methods and technical aspects of DFT. Although it is important to develop methods and program, external package are still often used. At the end of this chapter, we briefly some widely used simulation package and the application of DFT. In the third chapter, we begin to focus on properties of real materials by first principles calculation. We study a kind of minerals named Ca perovskite, investigate its possible structure and anisotropy at Earth’s mental condition. By understanding and predicting geo-physically important materials properties at extreme conditions, we can get the most accurate information to interpret seismic data in the context of likely geophysical processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

通过对高温高压下钠长石熔体结构及水在钠长石熔体中溶解机制的Raman和FTIR光谱实验研究,可以得出以下结论:(1)随着压力升高(1bar-2.0GPa)NaAlSi_3O_8熔体玻璃Raman光谱的低频区(50-650cm~(-1))不断变窄并向高频方向移动,同时高频区(850-1300cm~(-1))不断变窄且向低频区方向移动,这表明随着压力升高T-O-T为(T = Si, Al)键角(0)不断减小,并且分布范围变窄,T-O-T键角这种变化从而可使T-O键的力常数减小,导致键强减弱,另外,580cm~(-1)谱峰强度随着压力升高不断减弱,并在0.8-1.0GPa时最为显著,这是由于在0.8-1.0GPa时包含(Si, Al)的平面三元环结构的“垮塌“造成的。此外,钠长石熔体结构随压力升高的这种变化特征与对其粘度的研究是相符的;(2)水在钠长石熔体中同时以OH和H_2O形式存在,这分别对应于FTIR光谱中的4500cm~(-1)及5200cm~(-1)谱峰。根据对水在钠长石熔体中溶解类型的红外光谱研究以及热力学计算都表明,在溶解初期水主要以OH存在于熔体中,此时H_2O含量相对较低;随着熔体中水含量的升高,OH所占比例越来越低,而H_2O分子则成为主要的溶解类型;(3)根据对含水钠长石玻璃的Raman和FTIR光谱研究,并结合Kohn等的MAS NMR结果,认为H_2O在NaAlSi_3O_8熔体中的溶解作用同时存在两种机制:一方面H_2O与Al-O°-Al 结构单元反应发生解聚作用而生成Q~3 Al-OH,并造成Raman光谱中900cm~(-1)谱峰的出现;另一方面水中的H~+与钠长石熔体中的Na~+发生转换作用成为电荷平衡离子。水在钠长石熔体中的溶解作用可表示为:H_2O + 3NaAlSi_3O_8 = 2NaAl(OH)Si_3O_(7.5) + HAlSi_3O_8 + NaOH 考虑到水在熔体中的溶解类型与水含量的关系以及熔体粘度的变化,在溶解初期水的溶解机制以生成Al-OH为主,随着水含量的升高,H~+与Na~+之间的置换作用变得愈加重要。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the properties of strained tetrahedrally bonded materials are explored theoretically, with special focus on group-III nitrides. In order to do so, a multiscale approach is taken: accurate quantitative calculations of material properties are carried out in a quantum first-principles frame, for small systems. These properties are then extrapolated and empirical methods are employed to make predictions for larger systems, such as alloys or nanostructures. We focus our attention on elasticity and electric polarization in semiconductors. These quantities serve as input for the calculation of the optoelectronic properties of these systems. Regarding the methods employed, our first-principles calculations use highly- accurate density functional theory (DFT) within both standard Kohn-Sham and generalized (hybrid functional) Kohn-Sham approaches. We have developed our own empirical methods, including valence force field (VFF) and a point-dipole model for the calculation of local polarization and local polarization potential. Our local polarization model gives insight for the first time to local fluctuations of the electric polarization at an atomistic level. At the continuum level, we have studied composition-engineering optimization of nitride nanostructures for built-in electrostatic field reduction, and have developed a highly efficient hybrid analytical-numerical staggered-grid computational implementation of continuum elasticity theory, that is used to treat larger systems, such as quantum dots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accepted Version

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While technologies for genetic sequencing have increased the promise of personalized medicine, they simultaneously pose threats to personal privacy. The public’s desire to protect itself from unauthorized access to information may limit the uses of this valuable resource. To date, there is limited understanding about the public’s attitudes toward the regulation and sharing of such information. We sought to understand the drivers of individuals’ decisions to disclose genetic information to a third party in a setting where disclosure potentially creates both private and social benefits, but also carries the risk of potential misuse of private information. We conducted two separate but related studies. First, we administered surveys to college students and parents, to determine individual attitudes toward and inter-generational influences on the disclosure decision. Second, we conducted a game-theory based experiment that assessed how participants’ decisions to disclose genetic information are influenced by societal and health factors. Key survey findings indicate that concerns about genetic information privacy negatively impact the likelihood of disclosure while the perceived benefits of disclosure and trust in the institution receiving the information have a positive influence. The experiment results also show that the risk of discrimination negatively affects the likelihood of disclosure, while the positive impact that disclosure has on the probability of finding a cure and the presence of a monetary incentive to disclose, increase the likelihood. We also study the determinants of individuals’ decision to be informed of findings about their health, and how information about health status is used for financial decisions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Near-threshold ionization of He has been studied by using a uniform semiclassical wavefunction for the two outgoing electrons in the final channel. The quantum mechanical transition amplitude for the direct and exchange scattering derived earlier by using the Kohn variational principle has been used to calculate the triple differential cross sections. Contributions from singlets and triplets are critically examined near the threshold for coplanar asymmetric geometry with equal energy sharing by the two outgoing electrons. It is found that in general the tripler contribution is much smaller compared to its singlet counterpart. However, at unequal scattering angles such as theta (1) = 60 degrees, theta (2) = 120 degrees the smaller peaks in the triplet contribution enhance both primary and secondary TDCS peaks. Significant improvements of the primary peak in the TDCS are obtained for the singlet results both in symmetric and asymmetric geometry indicating the need to treat the classical action variables without any approximation. Convergence of these cross sections are also achieved against the higher partial waves. Present results are compared with absolute and relative measurements of Rosel et al (1992 Phys. Rev. A 46 2539) and Selles et al (1987 J. Phys. B. At. Mel. Phys. 20 5195) respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currents across thin insulators are commonly taken as single electrons moving across classically forbidden regions; this independent particle picture is well-known to describe most tunneling phenomena. Examining quantum transport from a different perspective, i.e., by explicit treatment of electron-electron interactions, we evaluate different single particle approximations with specific application to tunneling in metal-molecule-metal junctions. We find maximizing the overlap of a Slater determinant composed of single-particle states to the many-body current-carrying state is more important than energy minimization for defining single-particle approximations in a system with open boundary conditions. Thus the most suitable single particle effective potential is not one commonly in use by electronic structure methods, such as the Hartree-Fock or Kohn-Sham approximations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a self-consistent magnetic tight-binding theory based in an expansion of the Hohenberg-Kohn density functional to second order, about a non-spin-polarized reference density. We show how a first order expansion about a density having a trial input magnetic moment leads to a fixed moment model. We employ a simple set of tight-binding parameters that accurately describes electronic structure and energetics, and show these to be transferable between first row transition metals and their alloys. We make a number of calculations of the electronic structure of dilute Cr impurities in Fe, which we compare with results using the local spin density approximation. The fixed moment model provides a powerful means for interpreting complex magnetic configurations in alloys; using this approach, we are able to advance a simple and readily understood explanation for the observed anomaly in the enthalpy of mixing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Wigner transition in a jellium model of cylindrical nanowires has been investigated by density-functional computations using the local spin-density approximation. A wide range of background densities rho(b) has been explored from the nearly ideal metallic regime (r(s)=[3/4 pi rho(b)](1/3)=1) to the high correlation limit (r(s)=100). Computations have been performed using an unconstrained plane wave expansion for the Kohn-Sham orbitals and a large simulation cell with up to 480 electrons. The electron and spin distributions retain the cylindrical symmetry of the Hamiltonian at high density, while electron localization and spin polarization arise nearly simultaneously in low-density wires (r(s)similar to 30). At sufficiently low density (r(s)>= 40), the ground-state electron distribution is the superposition of well defined and nearly disjoint droplets, whose charge and spin densities integrate almost exactly to one electron and 1/2 mu(B), respectively. Droplets are arranged on radial shells and define a distorted lattice whose structure is intermediate between bcc and fcc. Dislocations and grain boundaries are apparent in the droplets' configuration found by our simulations. Our computations aim at modeling the behavior of experimental low-carried density systems made of lightly doped semiconductor nanostructures or conducting polymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A diagnostic system for ICD-11 is proposed which commences with broad reorganization and simplification of the current categories and the use of clinically relevant specifiers. Such changes have implications for the positioning of diagnostic groups and lead to a range of possibilities for improving terminology and the juxtaposition of individual conditions. The development of ICD-11 provides the first opportunity in almost two decades to improve the validity and reliability of the international classification system. Widespread change in broad categories and criteria cannot be justified by research that has emerged since the last revision. It would also be disruptive to clinical practice and might devalue past research work. However, the case for reorganization of the categories is stronger and has recently been made by an eminent international group of researchers (Andrews et al., 2009). A simpler, interlinked diagnostic system is proposed here which is likely to have fewer categories than its predecessor. There are major advantages of such a system for clinical practice and research and it could also produce much needed simplification for primary care (Gask et al., 2008) and the developing world (Wig, 1990; Kohn et al., 2004).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (P-SR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for 'aggregate' genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies. Molecular Psychiatry (2009) 14, 774-785; doi:10.1038/mp.2008.135; published online 30 December 2008

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-dependent density-functional theory is a rather accurate and efficient way to compute electronic excitations for finite systems. However, in the macroscopic limit (systems of increasing size), for the usual adiabatic random-phase, local-density, or generalized-gradient approximations, one recovers the Kohn-Sham independent-particle picture, and thus the incorrect band gap. To clarify this trend, we investigate the macroscopic limit of the exchange-correlation kernel in such approximations by means of an algebraical analysis complemented with numerical studies of a one-dimensional tight-binding model. We link the failure to shift the Kohn-Sham spectrum of these approximate kernels to the fact that the corresponding operators in the transition space act only on a finite subspace.