977 resultados para Iron-binding-capacity
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
Dissertação de mestrado em Bioquímica Aplicada (área de especialização em Biotecnologia)
Resumo:
Immunotherapy with monoclonal and polyclonal immunoglobulin is successfully applied to improve many clinical conditions, including infection, autoimmune diseases, or immunodeficiency. Most immunoglobulin products, recombinant or plasma-derived, are based on IgG antibodies, whereas to date, the use of IgA for therapeutic application has remained anecdotal. In particular, purification or production of large quantities of secretory IgA (SIgA) for potential mucosal application has not been achieved. In this work, we sought to investigate whether polymeric IgA (pIgA) recovered from human plasma is able to associate with secretory component (SC) to generate SIgA-like molecules. We found that ∼15% of plasma pIgA carried J chain and displayed selective SC binding capacity either in a mixture with monomeric IgA (mIgA) or after purification. The recombinant SC associated covalently in a 1:1 stoichiometry with pIgA and with similar efficacy as colostrum-derived SC. In comparison with pIgA, the association with SC delayed degradation of SIgA by intestinal proteases. Similar results were obtained with plasma-derived IgM. In vitro, plasma-derived IgA and SIgA neutralized Shigella flexneri used as a model pathogen, resulting in a delay of bacteria-induced damage targeted to polarized Caco-2 cell monolayers. The sum of these novel data demonstrates that association of plasma-derived IgA or IgM with recombinant/colostrum-derived SC is feasible and yields SIgA- and SIgM-like molecules with similar biochemical and functional characteristics as mucosa-derived immunoglobulins.
Resumo:
Lipophorin (Lp) is the main haemolymphatic lipoprotein in insects and transports lipids between different organs. In adult females, lipophorin delivers lipids to growing oocytes. In this study, the interaction of this lipoprotein with the ovaries of Rhodnius prolixus was characterised using an oocyte membrane preparation and purified radiolabelled Lp (125I-Lp). Lp-specific binding to the oocyte membrane reached equilibrium after 40-60 min and when 125I-Lp was incubated with increasing amounts of membrane protein, corresponding increases in Lp binding were observed. The specific binding of Lp to the membrane preparation was a saturable process, with a Kdof 7.1 ± 0.9 x 10-8M and a maximal binding capacity of 430 ± 40 ng 125I-Lp/µg of membrane protein. The binding was calcium independent and pH sensitive, reaching its maximum at pH 5.2-5.7. Suramin inhibited the binding interaction between Lp and the oocyte membranes, which was completely abolished at 0.5 mM suramin. The oocyte membrane preparation from R. prolixus also showed binding to Lp from Manduca sexta. When Lp was fluorescently labelled and injected into vitellogenic females, the level of Lp-oocyte binding was much higher in females that were fed whole blood than in those fed blood plasma.
Resumo:
Background: The increasing availability of different monoclonal antibodies (mAbs) opens the way to more specific biologic therapy of cancer patients. However, despite the significant success of therapy in breast and ovarian carcinomas with anti-HER2 mAbs as well as in non-Hodkin B cell lymphomas with anti-CD20 mAbs, certain B cell malignancies such as B chronic lymphocytic leukaemia (B-CLL) respond poorly to anti-CD20 mAb, due to the low surface expression of this molecule. Thus, new mAbs adapted to each types of tumour will help to develop personalised mAb treatment. To this aim, we analyse the biological and therapeutic properties of three mAbs directed against the CD5, CD71 or HLA-DR molecules highly expressed on B-CLL cells. Results: The three mAbs, after purification and radiolabelling demonstrated high and specific binding capacity to various human leukaemia target cells. Further in vitro analysis showed that mAb anti-CD5 induced neither growth inhibition nor apoptosis, mAb anti-CD71 induced proliferation inhibition with no early sign of cell death and mAb anti-HLA-DR induced specific cell aggregation, but without evidence of apoptosis. All three mAbs induced various degrees of ADCC by NK cells, as well as phagocytosis by macrophages. Only the anti-HLA-DR mAb induced complement mediated lysis. Coincubation of different pairs of mAbs did not significantly modify the in vitro results. In contrast with these discrete and heterogeneous in vitro effects, in vivo the three mAbs demonstrated marked anti-tumour efficacy and prolongation of mice survival in two models of SCID mice, grafted either intraperitoneally or intravenously with the CD5 transfected JOK1-5.3 cells. This cell line was derived from a human hairy cell leukaemia, a type of malignancy known to have very similar biological properties as the B-CLL, whose cells constitutively express CD5. Interestingly, the combined injection of anti-CD5 with anti-HLA-DR or with anti-CD71 led to longer mouse survival, as compared to single mAb injection, up to complete inhibition of tumour growth in 100% mice treated with both anti-HLA-DR and anti-CD5. Conclusions: Altogether these data suggest that the combined use of two mAbs, such as anti-HLA-DR and anti-CD5, may significantly enhance their therapeutic potential.
Resumo:
Lactotransferrin, also known as lactoferrin, is an iron binding glycoprotein that displays antiviral activity against many different infectious agents, including human immunodeficiency virus (HIV)-1. Lactotransferrin is present in the breast milk and in the female genitourinary mucosa and it has been hypothesised as a possible candidate to prevent mother-to-child HIV-1 transmission. To verify if two functional polymorphisms, Thr29Ala and Arg47Lys, in the lactotransferrin encoding gene (LTF) could affect HIV-1 infection and vertical transmission, a preliminary association study was performed in 238 HIV-1 positive and 99 HIV-1 negative children from Brazil, Italy, Africa and India. No statistically significant association for the Thr29Ala and Arg47Lys LTF polymorphisms and HIV-1 susceptibility in the studied populations was found. Additionally LTF polymorphisms frequencies were compared between the four different ethnic groups.
Resumo:
Hepatitis C virus (HCV) envelope protein 2 (E2) is involved in viral binding to host cells. The aim of this work was to produce recombinant E2B and E2Y HCV proteins in Escherichia coli and Pichia pastoris, respectively, and to study their interactions with low-density lipoprotein receptor (LDLr) and CD81 in human umbilical vein endothelial cells (HUVEC) and the ECV304 bladder carcinoma cell line. To investigate the effects of human LDL and differences in protein structure (glycosylated or not) on binding efficiency, the recombinant proteins were either associated or not associated with lipoproteins before being assayed. The immunoreactivity of the recombinant proteins was analysed using pooled serum samples that were either positive or negative for hepatitis C. The cells were immunophenotyped by LDLr and CD81 using flow cytometry. Binding and binding inhibition assays were performed in the presence of LDL, foetal bovine serum (FCS) and specific antibodies. The results revealed that binding was reduced in the absence of FCS, but that the addition of human LDL rescued and increased binding capacity. In HUVEC cells, the use of antibodies to block LDLr led to a significant reduction in the binding of E2B and E2Y. CD81 antibodies did not affect E2B and E2Y binding. In ECV304 cells, blocking LDLr and CD81 produced similar effects, but they were not as marked as those that were observed in HUVEC cells. In conclusion, recombinant HCV E2 is dependent on LDL for its ability to bind to LDLr in HUVEC and ECV304 cells. These findings are relevant because E2 acts to anchor HCV to host cells; therefore, high blood levels of LDL could enhance viral infectivity in chronic hepatitis C patients.
Resumo:
Alpha-ketoglutarate-dependent (R)-dichlorprop dioxygenase (RdpA) and alpha-ketoglutarate-dependent (S)-dichlorprop dioxygenase (SdpA), which are involved in the degradation of phenoxyalkanoic acid herbicides in Sphingomonas herbicidovorans MH, were expressed and purified as His6-tagged fusion proteins from Escherichia coli BL21(DE3)(pLysS). RdpA and SdpA belong to subgroup II of the alpha-ketoglutarate-dependent dioxygenases and share the specific motif HXDX(24)TX(131)HX(10)R. Amino acids His-111, Asp-113, and His-270 and amino acids His-102, Asp-104, and His 257 comprise the 2-His-1-carboxylate facial triads and were predicted to be involved in iron binding in RdpA and SdpA, respectively. RdpA exclusively transformed the (R) enantiomers of mecoprop [2-(4-chloro-2-methylphenoxy)propanoic acid] and dichlorprop [2-(2,4-dichlorophenoxy)propanoic acid], whereas SdpA was specific for the (S) enantiomers. The apparent Km values were 99 microM for (R)-mecoprop, 164 microM for (R)-dichlorprop, and 3 microM for alpha-ketoglutarate for RdpA and 132 microM for (S)-mecoprop, 495 microM for (S)-dichlorprop, and 20 microM for alpha-ketoglutarate for SdpA. Both enzymes had high apparent Km values for oxygen; these values were 159 microM for SdpA and >230 microM for RdpA, whose activity was linearly dependent on oxygen at the concentration range measured. Both enzymes had narrow cosubstrate specificity; only 2-oxoadipate was able to replace alpha-ketoglutarate, and the rates were substantially diminished. Ferrous iron was necessary for activity of the enzymes, and other divalent cations could not replace it. Although the results of growth experiments suggest that strain MH harbors a specific 2,4-dichlorophenoxyacetic acid-converting enzyme, tfdA-, tfdAalpha-, or cadAB-like genes were not discovered in a screening analysis in which heterologous hybridization and PCR were used.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon treated with low doses (0.5 nM) of epidermal growth factor (EGF) showed a small, transient increase in DNA synthesis but no significant changes in total DNA and protein content. By contrast, treatment with high doses (13 nM) of EGF caused a marked stimulation of DNA synthesis as well as a net increase in DNA and protein content. The expression of the astrocyte-specific enzyme, glutamine synthetase, was greatly enhanced both at low and at high EGF concentrations. These results suggest that at low concentration EGF stimulates exclusively the differentiation of astrocytes, whereas at high concentration, EGF has also a mitogenic effect. Nonproliferating astrocytes in cultures treated with 0.4 microM 1-beta-D-arabinofuranosyl-cytosine were refractory to EGF treatment, indicating that their responsiveness to EGF is cell cycle-dependent. Binding studies using a crude membrane fraction of 5-day cultures showed a homogeneous population of EGF binding sites (Kd approximately equal to 2.6 nM). Specific EGF binding sites were found also in non-proliferating (and nonresponsive) cultures, although they showed slightly reduced affinity and binding capacity. This finding suggests that the cell cycle-dependent control of astroglial responsiveness to EGF does not occur at the receptor level. However, it was found that the specific EGF binding sites disappear with progressive cellular differentiation.
Resumo:
MHC-peptide tetramers have become essential tools for T-cell analysis, but few MHC class II tetramers incorporating peptides from human tumor and self-antigens have been developed. Among limiting factors are the high polymorphism of class II molecules and the low binding capacity of the peptides. Here, we report the generation of molecularly defined tetramers using His-tagged peptides and isolation of folded MHC/peptide monomers by affinity purification. Using this strategy we generated tetramers of DR52b (DRB3*0202), an allele expressed by approximately half of Caucasians, incorporating an epitope from the tumor antigen NY-ESO-1. Molecularly defined tetramers avidly and stably bound to specific CD4(+) T cells with negligible background on nonspecific cells. Using molecularly defined DR52b/NY-ESO-1 tetramers, we could demonstrate that in DR52b(+) cancer patients immunized with a recombinant NY-ESO-1 vaccine, vaccine-induced tetramer-positive cells represent ex vivo in average 1:5,000 circulating CD4(+) T cells, include central and transitional memory polyfunctional populations, and do not include CD4(+)CD25(+)CD127(-) regulatory T cells. This approach may significantly accelerate the development of reliable MHC class II tetramers to monitor immune responses to tumor and self-antigens.
Resumo:
Biodistribution and tumor uptake of a chimeric human-mouse monoclonal antibody (MAb) and the original mouse MAb have been comparatively studied. METHODS: Eighteen patients with suspected colorectal cancer scheduled for surgery underwent immunoscintigraphy with 123I-labeled chimeric anti-CEA MAb. Iodine-125 and 131I trace-labeled chimeric and original mouse MAb were simultaneously injected for biodistribution studies. RESULTS: Similar serum kinetics and a low immunogenicity were observed for both antibodies. Mean binding capacity to CEA measured in PBS after radiolabeling was identical for both MAbs and it was slightly decreased when measured in serum 1-4 hr after injection. Radiochromatograms of patients sera showed immune complex formation related to the amount of circulating CEA. Postoperative ex vivo radioactivity counting in tissue samples revealed similar antibody distributions with notably similar antibody uptakes in tumors. High tumor uptakes (between 0.02 to 0.06% injected dose per g) were observed in 3 of 13 patients operated for primary or metastatic colorectal cancer. CONCLUSION: In this dual-label technique, the radioiodinated anti-CEA IgG4 chimeric MAb and the original mouse IgG1 MAb were shown to have very similar behavior in colorectal cancer patients.
Resumo:
Understanding the role of gene duplications in establishing vertebrate innovations is one of the main challenges of Evo-Devo (evolution of development) studies. Data on evolutionary changes in gene expression (i.e., evolution of transcription factor-cis-regulatory elements relationships) tell only part of the story; protein function, best studied by biochemical and functional assays, can also change. In this study, we have investigated how gene duplication has affected both the expression and the ligand-binding specificity of retinoic acid receptors (RARs), which play a major role in chordate embryonic development. Mammals have three paralogous RAR genes--RAR alpha, beta, and gamma--which resulted from genome duplications at the origin of vertebrates. By using pharmacological ligands selective for specific paralogues, we have studied the ligand-binding capacities of RARs from diverse chordates species. We have found that RAR beta-like binding selectivity is a synapomorphy of all chordate RARs, including a reconstructed synthetic RAR representing the receptor present in the ancestor of chordates. Moreover, comparison of expression patterns of the cephalochordate amphioxus and the vertebrates suggests that, of all the RARs, RAR beta expression has remained most similar to that of the ancestral RAR. On the basis of these results together, we suggest that while RAR beta kept the ancestral RAR role, RAR alpha and RAR gamma diverged both in ligand-binding capacity and in expression patterns. We thus suggest that neofunctionalization occurred at both the expression and the functional levels to shape RAR roles during development in vertebrates.
Resumo:
The Ly49A NK cell receptor interacts with MHC class I (MHC-I) molecules on target cells and negatively regulates NK cell-mediated target cell lysis. We have recently shown that the MHC-I ligand-binding capacity of the Ly49A NK cell receptor is controlled by the NK cells' own MHC-I. To see whether this property was unique to Ly49A, we have investigated the binding of soluble MHC-I multimers to the Ly49 family receptors expressed in MHC-I-deficient and -sufficient C57BL/6 mice. In this study, we confirm the binding of classical MHC-I to the inhibitory Ly49A, C and I receptors, and demonstrate that detectable MHC-I binding to MHC-I-deficient NK cells is exclusively mediated by these three receptors. We did not detect significant multimer binding to stably transfected or NK cell-expressed Ly49D, E, F, G, and H receptors. Yet, we identified the more distantly related Ly49B and Ly49Q, which are not expressed by NK cells, as two novel MHC-I receptors in mice. Furthermore, we show using MHC-I-sufficient mice that the NK cells' own MHC-I significantly masks the Ly49A and Ly49C, but not the Ly49I receptor. Nevertheless, Ly49I was partly masked on transfected tumor cells, suggesting that the structure of Ly49I is compatible in principal with cis binding of MHC-I. Finally, masking of Ly49Q by cis MHC-I was minor, whereas masking of Ly49B was not detected. These data significantly extend the MHC-I specificity of Ly49 family receptors and show that the accessibility of most, but not all, MHC-I-binding Ly49 receptors is modulated by the expression of MHC-I in cis.
Resumo:
The process of epidermal differentiation involves proliferation, differentiation, migration and maturation of keratinocytes to form an impermeable barrier against water loss and outside environment. It is controlled by highly balanced regulatory machinery, involving many molecules that are still under investigation.Homeobox proteins are involved in body patterning and morphogenesis of organs and are studied as potentially good candidates to regulate this process. In the first project we investigated the role of a protein named HOP which belongs to a group of homeobox proteins. Even if HOP is a small protein almost completely composed of the homeodomain and without DNA binding capacity, it is considered as transcriptional regulator in different tissues. HOP interacts with serum response factor (SRF) and histone deacetylase type 2 (HDAC2). By microarray analysis we found that HOP expression increases in cultured human primary keratinocytes (NHK) which undergo calcium-induced differentiation. HOP protein was localized in granular layer of the epidermis of healthy individuals. Lack of HOP was demonstrated in psoriatic lesions, whereas a strong expression was demonstrated in the lesional skin of patients affected with lichen planus (LP). Since LP is characterized by hypergranulosis while psoriatic lesions by progressive lack of the granular layer, the obtained data indicated that HOP might have a potential function in granular layer of epidermis. To investigate HOP function, we inhibited its expression by using HOP specific StealthRNAi and we overexpressed HOP using lentiviral vectors in differentiating NHK. The conclusion of both experiments indicated that HOP positively regulates the expression of late differentiation markers, such as profilaggrin, loricrin and transglutaminase 1. The in vitro data were next confirmed in vivo using HOP knockout mouse model.The second part of my study involved analysis of mechanisms underlying the pathogenesis of epidermolytic hyperkeratosis (EHK). EHK is a genetic disorder characterized by erythema, skin blistering, keratinocyte hyperproliferation and hyperkeratosis. EHK is caused by mutations in keratin 1 or 10 (K1, K10) which are major structural proteins of differentiated keratinocytes and participate in the cellular scaffold formation. To investigate how the structural proteins carrying mutations alter cellular signaling, we established an in vitro model for EHK by overexpression of one of the most common K10 mutations reported so far (K10R156H), in primary human keratinocytes. In order to mimic the in vivo situation, mutated keratinocytes growing on silicone membranes were subjected to mechanical stretch. We observed strong collapse of KIF in K10R156H keratinocytes when subjected to stretch for 30 minutes. Our data demonstrated stronger activation of p38, a member of MAPK stress signaling pathways, in K10R156H when compared to control cells. We demonstrated also that K10R156H keratinocytes showed an induction of TNF-α and RANTES release in response to stretch.Taken together these studies characterize a novel regulator of epidermal differentiation - HOP and demonstrate new aspects implicated in the pathogenesis of EHK.
Resumo:
Ga(3+) is a semimetal element that competes for the iron-binding sites of transporters and enzymes. We investigated the activity of gallium maltolate (GaM), an organic gallium salt with high solubility, against laboratory and clinical strains of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-susceptible Staphylococcus epidermidis (MSSE), and methicillin-resistant S. epidermidis (MRSE) in logarithmic or stationary phase and in biofilms. The MICs of GaM were higher for S. aureus (375 to 2000 microg/ml) than S. epidermidis (94 to 200 microg/ml). Minimal biofilm inhibitory concentrations were 3,000 to >or=6,000 microg/ml (S. aureus) and 94 to 3,000 microg/ml (S. epidermidis). In time-kill studies, GaM exhibited a slow and dose-dependent killing, with maximal action at 24 h against S. aureus of 1.9 log(10) CFU/ml (MSSA) and 3.3 log(10) CFU/ml (MRSA) at 3x MIC and 2.9 log(10) CFU/ml (MSSE) and 4.0 log(10) CFU/ml (MRSE) against S. epidermidis at 10x MIC. In calorimetric studies, growth-related heat production was inhibited by GaM at subinhibitory concentrations; and the minimal heat inhibition concentrations were 188 to 4,500 microg/ml (MSSA), 94 to 1,500 microg/ml (MRSA), and 94 to 375 microg/ml (MSSE and MRSE), which correlated well with the MICs. Thus, calorimetry was a fast, accurate, and simple method useful for investigation of antimicrobial activity at subinhibitory concentrations. In conclusion, GaM exhibited activity against staphylococci in different growth phases, including in stationary phase and biofilms, but high concentrations were required. These data support the potential topical use of GaM, including its use for the treatment of wound infections, MRSA decolonization, and coating of implants.