990 resultados para Importance Sampling
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) are very useful insects, as they improve the chemo-physical properties of soil, clean pastures from dung pads, and help control symbovine flies associated with bovine cattle. Their importance makes it fundamental to sample and survey them adequately. The objectives of the present study were to determine the influence of decaying insects trapped in pitfalls on the attractiveness of Moura pig Sus scrofa L. (Suidae) and collared peccary Tayassu tajacu (L.) (Tayassuidae) dung used as baits to lure dung beetles, and to establish how long these baits remain attractive to dung beetles when used in these traps. Some dung beetle species seemed to be able to discriminate against foul smell from decaying insects within the first 24 h, hence decreasing trap efficiency. This was more evident in peccary dung-baited traps, which proved to be the least attractive bait. Attractiveness lasted only 24 h for peccary dung, after which it became unattractive, whereas the pig dung bait was highly attractive for 48 h, after which its attractiveness diminished but was not completely lost.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study aimed to analyze the species composition and functional groups of the ant community and to assess the efficiency of two sampling methods, pitfall and leaf litter sampling, in an urban park. A total of 1,401 ants were collected, which belonged to six subfamilies and 36 species. The predominant species was Wasmannia auropunctata (present in 45.36% of the samples), while the functional group of opportunistic ants were the most frequent (present in 83.75% of the samples) and abundant (95.29% of the total collected specimens) functional group. The Jaccard Similarity Index showed a low similarity between the two sampling methods, as the difference of the number of individuals for each species between these two methods was not significant in only one case (Linepithema sp. 1, p = 0.4561). The fungus-growing and cryptic ants were more collected in leaflitter samples (p<0.0001; p = 0.0348 respectively). Although there was no significant difference (p = 0.6397) between the two sampling methods for the total individuals of opportunistic ants, more species of this group were collected in pitfall traps. This difference was not significant because of the high presence of W. auropunctata, an opportunistic ant, in samples of leaf litter. Due to the predominance of tramp ants in the studied area, this article illustrates the importance of green urban areas in ant control strategies, since these sites could be used as a source of new colonization for these ants. Furthermore, the combination of the two sampling methods seems to be complementary for obtaining a more complete picture of the ant community.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Recently, researches have shown that the performance of metaheuristics can be affected by population initialization. Opposition-based Differential Evolution (ODE), Quasi-Oppositional Differential Evolution (QODE), and Uniform-Quasi-Opposition Differential Evolution (UQODE) are three state-of-the-art methods that improve the performance of the Differential Evolution algorithm based on population initialization and different search strategies. In a different approach to achieve similar results, this paper presents a technique to discover promising regions in a continuous search-space of an optimization problem. Using machine-learning techniques, the algorithm named Smart Sampling (SS) finds regions with high possibility of containing a global optimum. Next, a metaheuristic can be initialized inside each region to find that optimum. SS and DE were combined (originating the SSDE algorithm) to evaluate our approach, and experiments were conducted in the same set of benchmark functions used by ODE, QODE and UQODE authors. Results have shown that the total number of function evaluations required by DE to reach the global optimum can be significantly reduced and that the success rate improves if SS is employed first. Such results are also in consonance with results from the literature, stating the importance of an adequate starting population. Moreover, SS presents better efficacy to find initial populations of superior quality when compared to the other three algorithms that employ oppositional learning. Finally and most important, the SS performance in finding promising regions is independent of the employed metaheuristic with which SS is combined, making SS suitable to improve the performance of a large variety of optimization techniques. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Proper ion channels’ functioning is a prerequisite for a normal cell and disorders involving ion channels, or channelopathies, underlie many human diseases. Long QT syndromes (LQTS) for example may arise from the malfunctioning of hERG channel, caused either by the binding of drugs or mutations in HERG gene. In the first part of this thesis I present a framework to investigate the mechanism of ion conduction through hERG channel. The free energy profile governing the elementary steps of ion translocation in the pore was computed by means of umbrella sampling simulations. Compared to previous studies, we detected a different dynamic behavior: according to our data hERG is more likely to mediate a conduction mechanism which has been referred to as “single-vacancy-like” by Roux and coworkers (2001), rather then a “knock-on” mechanism. The same protocol was applied to a model of hERG presenting the Gly628Ser mutation, found to be cause of congenital LQTS. The results provided interesting insights about the reason of the malfunctioning of the mutant channel. Since they have critical functions in viruses’ life cycle, viral ion channels, such as M2 proton channel, are considered attractive targets for antiviral therapy. A deep knowledge of the mechanisms that the virus employs to survive in the host cell is of primary importance in the identification of new antiviral strategies. In the second part of this thesis I shed light on the role that M2 plays in the control of electrical potential inside the virus, being the charge equilibration a condition required to allow proton influx. The ion conduction through M2 was simulated using metadynamics technique. Based on our results we suggest that a potential anion-mediated cation-proton exchange, as well as a direct anion-proton exchange could both contribute to explain the activity of the M2 channel.
Resumo:
We report dramatic sensitivity enhancements in multidimensional MAS NMR spectra by the use of nonuniform sampling (NUS) and introduce maximum entropy interpolation (MINT) processing that assures the linearity between the time and frequency domains of the NUS acquired data sets. A systematic analysis of sensitivity and resolution in 2D and 3D NUS spectra reveals that with NUS, at least 1.5- to 2-fold sensitivity enhancement can be attained in each indirect dimension without compromising the spectral resolution. These enhancements are similar to or higher than those attained by the newest-generation commercial cryogenic probes. We explore the benefits of this NUS/MaxEnt approach in proteins and protein assemblies using 1-73-(U-C-13,N-15)/74-108-(U-N-15) Escherichia coil thioredoxin reassembly. We demonstrate that in thioredoxin reassembly, NUS permits acquisition of high-quality 3D-NCACX spectra, which are inaccessible with conventional sampling due to prohibitively long experiment times. Of critical importance, issues that hinder NUS-based SNR enhancement in 3D-NMR of liquids are mitigated in the study of solid samples in which theoretical enhancements on the order of 3-4 fold are accessible by compounding the NUS-based SNR enhancement of each indirect dimension. NUS/MINT is anticipated to be widely applicable and advantageous for multidimensional heteronuclear MAS NMR spectroscopy of proteins, protein assemblies, and other biological systems.
Resumo:
In all European Union countries, chemical residues are required to be routinely monitored in meat. Good farming and veterinary practice can prevent the contamination of meat with pharmaceutical substances, resulting in a low detection of drug residues through random sampling. An alternative approach is to target-monitor farms suspected of treating their animals with antimicrobials. The objective of this project was to assess, using a stochastic model, the efficiency of these two sampling strategies. The model integrated data on Swiss livestock as well as expert opinion and results from studies conducted in Switzerland. Risk-based sampling showed an increase in detection efficiency of up to 100% depending on the prevalence of contaminated herds. Sensitivity analysis of this model showed the importance of the accuracy of prior assumptions for conducting risk-based sampling. The resources gained by changing from random to risk-based sampling should be transferred to improving the quality of prior information.
Resumo:
We present results from an intercomparison program of CO2, δ(O2/N2) and δ13CO2 measurements from atmospheric flask samples. Flask samples are collected on a bi-weekly basis at the High Altitude Research Station Jungfraujoch in Switzerland for three European laboratories: the University of Bern, Switzerland, the University of Groningen, the Netherlands and the Max Planck Institute for Biogeochemistry in Jena, Germany. Almost 4 years of measurements of CO2, δ(O2/N2) and δ13CO2 are compared in this paper to assess the measurement compatibility of the three laboratories. While the average difference for the CO2 measurements between the laboratories in Bern and Jena meets the required compatibility goal as defined by the World Meteorological Organization, the standard deviation of the average differences between all laboratories is not within the required goal. However, the obtained annual trend and seasonalities are the same within their estimated uncertainties. For δ(O2/N2) significant differences are observed between the three laboratories. The comparison for δ13CO2 yields the least compatible results and the required goals are not met between the three laboratories. Our study shows the importance of regular intercomparison exercises to identify potential biases between laboratories and the need to improve the quality of atmospheric measurements.
Resumo:
Total nitrogen (TN) loadings in riverine sediments and their coastal depocenters were compared for Il river systems worldwide to assess the potential impact of riverine particulates on coastal nitrogen budgets. Strong relationships between sediment specific surface area and TN allow these impacts to be estimated without the intense sampling normally required to achieve such budgets. About half of the systems showed higher nitrogen loadings in the riverine sediments than those from the coastal depocenter. In spite of uncertainties, these comparisons indicate that large, turbid rivers, such as the Amazon, Huanghe, and the Mississippi, deliver sediments that in turn release significant or major fractions of the total riverine nitrogen delivery. Riverine particulates must therefore be considered an essential factor in watershed nutrient loading to coastal ecosystems and may affect delivered nutrient ratios as well as total nutrient loading. The relative importance of particulate versus dissolved delivery has decreased over recent decades in the Mississippi as a result of damming and fertilizer use in the watershed.
Resumo:
BACKGROUND The objective of the study was to evaluate the implications of different classifications of rheumatic heart disease on estimated prevalence, and to systematically assess the importance of incidental findings from echocardiographic screening among schoolchildren in Peru. METHODS We performed a cluster randomized observational survey using portable echocardiography among schoolchildren aged 5 to 16 years from randomly selected public and private schools in Arequipa, Peru. Rheumatic heart disease was defined according to the modified World Health Organization (WHO) criteria and the World Heart Federation (WHF) criteria. FINDINGS Among 1395 eligible students from 40 classes and 20 schools, 1023 (73%) participated in the present survey. The median age of the children was 11 years (interquartile range [IQR] 8-13 years) and 50% were girls. Prevalence of possible, probable and definite rheumatic heart disease according to the modified WHO criteria amounted to 19.7/1000 children and ranged from 10.2/1000 among children 5 to 8 years of age to 39.8/1000 among children 13 to 16 years of age; the prevalence of borderline/definite rheumatic heart disease according to the WHF criteria was 3.9/1000 children. 21 children (2.1%) were found to have congenital heart disease, 8 of which were referred for percutaneous or surgical intervention. CONCLUSIONS Prevalence of RHD in Peru was considerably lower compared to endemic regions in sub-Saharan Africa, southeast Asia, and Oceania; and paralleled by a comparable number of undetected congenital heart disease. Strategies to address collateral findings from echocardiographic screening are necessary in the setup of active surveillance programs for RHD. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02353663.
Resumo:
Dynamic thermal management techniques require a collection of on-chip thermal sensors that imply a significant area and power overhead. Finding the optimum number of temperature monitors and their location on the chip surface to optimize accuracy is an NP-hard problem. In this work we improve the modeling of the problem by including area, power and networking constraints along with the consideration of three inaccuracy terms: spatial errors, sampling rate errors and monitor-inherent errors. The problem is solved by the simulated annealing algorithm. We apply the algorithm to a test case employing three different types of monitors to highlight the importance of the different metrics. Finally we present a case study of the Alpha 21364 processor under two different constraint scenarios.