954 resultados para Image processing techniques
Resumo:
Sustainable yields from water wells in hard-rock aquifers are achieved when the well bore intersects fracture networks. Fracture networks are often not readily discernable at the surface. Lineament analysis using remotely sensed satellite imagery has been employed to identify surface expressions of fracturing, and a variety of image-analysis techniques have been successfully applied in “ideal” settings. An ideal setting for lineament detection is where the influences of human development, vegetation, and climatic situations are minimal and hydrogeological conditions and geologic structure are known. There is not yet a well-accepted protocol for mapping lineaments nor have different approaches been compared in non-ideal settings. A new approach for image-processing/synthesis was developed to identify successful satellite imagery types for lineament analysis in non-ideal terrain. Four satellite sensors (ASTER, Landsat7 ETM+, QuickBird, RADARSAT-1) and a digital elevation model were evaluated for lineament analysis in Boaco, Nicaragua, where the landscape is subject to varied vegetative cover, a plethora of anthropogenic features, and frequent cloud cover that limit the availability of optical satellite data. A variety of digital image processing techniques were employed and lineament interpretations were performed to obtain 12 complementary image products that were evaluated subjectively to identify lineaments. The 12 lineament interpretations were synthesized to create a raster image of lineament zone coincidence that shows the level of agreement among the 12 interpretations. A composite lineament interpretation was made using the coincidence raster to restrict lineament observations to areas where multiple interpretations (at least 4) agree. Nine of the 11 previously mapped faults were identified from the coincidence raster. An additional 26 lineaments were identified from the coincidence raster, and the locations of 10 were confirmed by field observation. Four manual pumping tests suggest that well productivity is higher for wells proximal to lineament features. Interpretations from RADARSAT-1 products were superior to interpretations from other sensor products, suggesting that quality lineament interpretation in this region requires anthropogenic features to be minimized and topographic expressions to be maximized. The approach developed in this study has the potential to improve siting wells in non-ideal regions.
Resumo:
A pilot study to detect volume changes of cerebral structures in growth hormone (GH)-deficient adults treated with GH using serial 3D MR image processing and to assess need for segmentation prior to registration was conducted.
Resumo:
Extensive experience with the analysis of human prophase chromosomes and studies into the complexity of prophase GTG-banding patterns have suggested that at least some prophase chromosomal segments can be accurately identified and characterized independently of the morphology of the chromosome as a whole. In this dissertation the feasibility of identifying and analyzing specified prophase chromosome segments was thus investigated as an alternative approach to prophase chromosome analysis based on whole chromosome recognition. Through the use of prophase idiograms at the 850-band-stage (FRANCKE, 1981) and a comparison system based on the calculation of cross-correlation coefficients between idiogram profiles, we have demonstrated that it is possible to divide the 24 human prophase idiograms into a set of 94 unique band sequences. Each unique band sequence has a banding pattern that is recognizable and distinct from any other non-homologous chromosome portion.^ Using chromosomes 11p and 16 thru 22 to demonstrate unique band sequence integrity at the chromosome level, we found that prophase chromosome banding pattern variation can be compensated for and that a set of unique band sequences very similar to those at the idiogram level can be identified on actual chromosomes.^ The use of a unique band sequence approach in prophase chromosome analysis is expected to increase efficiency and sensitivity through more effective use of available banding information. The use of a unique band sequence approach to prophase chromosome analysis is discussed both at the routine level by cytogeneticists and at an image processing level with a semi-automated approach to prophase chromosome analysis. ^
Resumo:
XMapTools is a MATLAB©-based graphical user interface program for electron microprobe X-ray image processing, which can be used to estimate the pressure–temperature conditions of crystallization of minerals in metamorphic rocks. This program (available online at http://www.xmaptools.com) provides a method to standardize raw electron microprobe data and includes functions to calculate the oxide weight percent compositions for various minerals. A set of external functions is provided to calculate structural formulae from the standardized analyses as well as to estimate pressure–temperature conditions of crystallization, using empirical and semi-empirical thermobarometers from the literature. Two graphical user interface modules, Chem2D and Triplot3D, are used to plot mineral compositions into binary and ternary diagrams. As an example, the software is used to study a high-pressure Himalayan eclogite sample from the Stak massif in Pakistan. The high-pressure paragenesis consisting of omphacite and garnet has been retrogressed to a symplectitic assemblage of amphibole, plagioclase and clinopyroxene. Mineral compositions corresponding to ~165,000 analyses yield estimates for the eclogitic pressure–temperature retrograde path from 25 kbar to 9 kbar. Corresponding pressure–temperature maps were plotted and used to interpret the link between the equilibrium conditions of crystallization and the symplectitic microstructures. This example illustrates the usefulness of XMapTools for studying variations of the chemical composition of minerals and for retrieving information on metamorphic conditions on a microscale, towards computation of continuous pressure–temperature-and relative time path in zoned metamorphic minerals not affected by post-crystallization diffusion.
Resumo:
This work is part of an on-going collaborative project between the medical and signal processing communities to promote new research efforts on automatic OSA (Obstructive Apnea Syndrome) diagnosis. In this paper, we explore the differences noted in phonetic classes (interphoneme) across groups (control/apnoea) and analyze their utility for OSA detection
Resumo:
To properly understand and model animal embryogenesis it is crucial to obtain detailed measurements, both in time and space, about their gene expression domains and cell dynamics. Such challenge has been confronted in recent years by a surge of atlases which integrate a statistically relevant number of different individuals to get robust, complete information about their spatiotemporal locations of gene patterns. This paper will discuss the fundamental image analysis strategies required to build such models and the most common problems found along the way. We also discuss the main challenges and future goals in the field.
Resumo:
To properly understand and model animal embryogenesis it is crucial to obtain detailed measurements, both in time and space, about their gene expression domains and cell dynamics. Such challenge has been confronted in recent years by a surge of atlases which integrate a statistically relevant number of different individuals to get robust, complete information about their spatiotemporal locations of gene patterns. This paper will discuss the fundamental image analysis strategies required to build such models and the most common problems found along the way. We also discuss the main challenges and future goals in the field.
Resumo:
This paper presents a computer vision system that successfully discriminates between weed patches and crop rows under uncontrolled lighting in real-time. The system consists of two independent subsystems, a fast image processing delivering results in real-time (Fast Image Processing, FIP), and a slower and more accurate processing (Robust Crop Row Detection, RCRD) that is used to correct the first subsystem's mistakes. This combination produces a system that achieves very good results under a wide variety of conditions. Tested on several maize videos taken of different fields and during different years, the system successfully detects an average of 95% of weeds and 80% of crops under different illumination, soil humidity and weed/crop growth conditions. Moreover, the system has been shown to produce acceptable results even under very difficult conditions, such as in the presence of dramatic sowing errors or abrupt camera movements. The computer vision system has been developed for integration into a treatment system because the ideal setup for any weed sprayer system would include a tool that could provide information on the weeds and crops present at each point in real-time, while the tractor mounting the spraying bar is moving
Resumo:
One important task in the design of an antenna is to carry out an analysis to find out the characteristics of the antenna that best fulfills the specifications fixed by the application. After that, a prototype is manufactured and the next stage in design process is to check if the radiation pattern differs from the designed one. Besides the radiation pattern, other radiation parameters like directivity, gain, impedance, beamwidth, efficiency, polarization, etc. must be also evaluated. For this purpose, accurate antenna measurement techniques are needed in order to know exactly the actual electromagnetic behavior of the antenna under test. Due to this fact, most of the measurements are performed in anechoic chambers, which are closed areas, normally shielded, covered by electromagnetic absorbing material, that simulate free space propagation conditions, due to the absorption of the radiation absorbing material. Moreover, these facilities can be employed independently of the weather conditions and allow measurements free from interferences. Despite all the advantages of the anechoic chambers, the results obtained both from far-field measurements and near-field measurements are inevitably affected by errors. Thus, the main objective of this Thesis is to propose algorithms to improve the quality of the results obtained in antenna measurements by using post-processing techniques and without requiring additional measurements. First, a deep revision work of the state of the art has been made in order to give a general vision of the possibilities to characterize or to reduce the effects of errors in antenna measurements. Later, new methods to reduce the unwanted effects of four of the most commons errors in antenna measurements are described and theoretical and numerically validated. The basis of all them is the same, to perform a transformation from the measurement surface to another domain where there is enough information to easily remove the contribution of the errors. The four errors analyzed are noise, reflections, truncation errors and leakage and the tools used to suppress them are mainly source reconstruction techniques, spatial and modal filtering and iterative algorithms to extrapolate functions. Therefore, the main idea of all the methods is to modify the classical near-field-to-far-field transformations by including additional steps with which errors can be greatly suppressed. Moreover, the proposed methods are not computationally complex and, because they are applied in post-processing, additional measurements are not required. The noise is the most widely studied error in this Thesis, proposing a total of three alternatives to filter out an important noise contribution before obtaining the far-field pattern. The first one is based on a modal filtering. The second alternative uses a source reconstruction technique to obtain the extreme near-field where it is possible to apply a spatial filtering. The last one is to back-propagate the measured field to a surface with the same geometry than the measurement surface but closer to the AUT and then to apply also a spatial filtering. All the alternatives are analyzed in the three most common near-field systems, including comprehensive noise statistical analyses in order to deduce the signal-to-noise ratio improvement achieved in each case. The method to suppress reflections in antenna measurements is also based on a source reconstruction technique and the main idea is to reconstruct the field over a surface larger than the antenna aperture in order to be able to identify and later suppress the virtual sources related to the reflective waves. The truncation error presents in the results obtained from planar, cylindrical and partial spherical near-field measurements is the third error analyzed in this Thesis. The method to reduce this error is based on an iterative algorithm to extrapolate the reliable region of the far-field pattern from the knowledge of the field distribution on the AUT plane. The proper termination point of this iterative algorithm as well as other critical aspects of the method are also studied. The last part of this work is dedicated to the detection and suppression of the two most common leakage sources in antenna measurements. A first method tries to estimate the leakage bias constant added by the receiver’s quadrature detector to every near-field data and then suppress its effect on the far-field pattern. The second method can be divided into two parts; the first one to find the position of the faulty component that radiates or receives unwanted radiation, making easier its identification within the measurement environment and its later substitution; and the second part of this method is able to computationally remove the leakage effect without requiring the substitution of the faulty component. Resumen Una tarea importante en el diseño de una antena es llevar a cabo un análisis para averiguar las características de la antena que mejor cumple las especificaciones fijadas por la aplicación. Después de esto, se fabrica un prototipo de la antena y el siguiente paso en el proceso de diseño es comprobar si el patrón de radiación difiere del diseñado. Además del patrón de radiación, otros parámetros de radiación como la directividad, la ganancia, impedancia, ancho de haz, eficiencia, polarización, etc. deben ser también evaluados. Para lograr este propósito, se necesitan técnicas de medida de antenas muy precisas con el fin de saber exactamente el comportamiento electromagnético real de la antena bajo prueba. Debido a esto, la mayoría de las medidas se realizan en cámaras anecoicas, que son áreas cerradas, normalmente revestidas, cubiertas con material absorbente electromagnético. Además, estas instalaciones se pueden emplear independientemente de las condiciones climatológicas y permiten realizar medidas libres de interferencias. A pesar de todas las ventajas de las cámaras anecoicas, los resultados obtenidos tanto en medidas en campo lejano como en medidas en campo próximo están inevitablemente afectados por errores. Así, el principal objetivo de esta Tesis es proponer algoritmos para mejorar la calidad de los resultados obtenidos en medida de antenas mediante el uso de técnicas de post-procesado. Primeramente, se ha realizado un profundo trabajo de revisión del estado del arte con el fin de dar una visión general de las posibilidades para caracterizar o reducir los efectos de errores en medida de antenas. Después, se han descrito y validado tanto teórica como numéricamente nuevos métodos para reducir el efecto indeseado de cuatro de los errores más comunes en medida de antenas. La base de todos ellos es la misma, realizar una transformación de la superficie de medida a otro dominio donde hay suficiente información para eliminar fácilmente la contribución de los errores. Los cuatro errores analizados son ruido, reflexiones, errores de truncamiento y leakage y las herramientas usadas para suprimirlos son principalmente técnicas de reconstrucción de fuentes, filtrado espacial y modal y algoritmos iterativos para extrapolar funciones. Por lo tanto, la principal idea de todos los métodos es modificar las transformaciones clásicas de campo cercano a campo lejano incluyendo pasos adicionales con los que los errores pueden ser enormemente suprimidos. Además, los métodos propuestos no son computacionalmente complejos y dado que se aplican en post-procesado, no se necesitan medidas adicionales. El ruido es el error más ampliamente estudiado en esta Tesis, proponiéndose un total de tres alternativas para filtrar una importante contribución de ruido antes de obtener el patrón de campo lejano. La primera está basada en un filtrado modal. La segunda alternativa usa una técnica de reconstrucción de fuentes para obtener el campo sobre el plano de la antena donde es posible aplicar un filtrado espacial. La última es propagar el campo medido a una superficie con la misma geometría que la superficie de medida pero más próxima a la antena y luego aplicar también un filtrado espacial. Todas las alternativas han sido analizadas en los sistemas de campo próximos más comunes, incluyendo detallados análisis estadísticos del ruido con el fin de deducir la mejora de la relación señal a ruido lograda en cada caso. El método para suprimir reflexiones en medida de antenas está también basado en una técnica de reconstrucción de fuentes y la principal idea es reconstruir el campo sobre una superficie mayor que la apertura de la antena con el fin de ser capaces de identificar y después suprimir fuentes virtuales relacionadas con las ondas reflejadas. El error de truncamiento que aparece en los resultados obtenidos a partir de medidas en un plano, cilindro o en la porción de una esfera es el tercer error analizado en esta Tesis. El método para reducir este error está basado en un algoritmo iterativo para extrapolar la región fiable del patrón de campo lejano a partir de información de la distribución del campo sobre el plano de la antena. Además, se ha estudiado el punto apropiado de terminación de este algoritmo iterativo así como otros aspectos críticos del método. La última parte de este trabajo está dedicado a la detección y supresión de dos de las fuentes de leakage más comunes en medida de antenas. El primer método intenta realizar una estimación de la constante de fuga del leakage añadido por el detector en cuadratura del receptor a todos los datos en campo próximo y después suprimir su efecto en el patrón de campo lejano. El segundo método se puede dividir en dos partes; la primera de ellas para encontrar la posición de elementos defectuosos que radian o reciben radiación indeseada, haciendo más fácil su identificación dentro del entorno de medida y su posterior substitución. La segunda parte del método es capaz de eliminar computacionalmente el efector del leakage sin necesidad de la substitución del elemento defectuoso.
Resumo:
A first study in order to construct a simple model of the mammalian retina is reported. The basic elements for this model are Optical Programmable Logic Cells, OPLCs, previously employed as a functional element for Optical Computing. The same type of circuit simulates the five types of neurons present in the retina. Different responses are obtained by modifying either internal or external connections. Two types of behaviors are reported: symmetrical and non-symmetrical with respect to light position. Some other higher functions, as the possibility to differentiate between symmetric and non-symmetric light images, are performed by another simulation of the first layers of the visual cortex. The possibility to apply these models to image processing is reported.
Resumo:
In this PhD Thesis proposal, the principles of diffusion MRI (dMRI) in its application to the human brain mapping of connectivity are reviewed. The background section covers the fundamentals of dMRI, with special focus on those related to the distortions caused by susceptibility inhomogeneity across tissues. Also, a deep survey of available correction methodologies for this common artifact of dMRI is presented. Two methodological approaches to improved correction are introduced. Finally, the PhD proposal describes its objectives, the research plan, and the necessary resources.
Resumo:
Most of the present digital images processing methods are related with objective characterization of external properties as shape, form or colour. This information concerns objective characteristics of different bodies and is applied to extract details to perform several different tasks. But in some occasions, some other type of information is needed. This is the case when the image processing system is going to be applied to some operation related with living bodies. In this case, some other type of object information may be useful. As a matter of fact, it may give additional knowledge about its subjective properties. Some of these properties are object symmetry, parallelism between lines and the feeling of size. These types of properties concerns more to internal sensations of living beings when they are related with their environment than to the objective information obtained by artificial systems. This paper presents an elemental system able to detect some of the above-mentioned parameters. A first mathematical model to analyze these situations is reported. This theoretical model will give the possibility to implement a simple working system. The basis of this system is the use of optical logic cells, previously employed in optical computing.
Resumo:
Evolvable Hardware (EH) is a technique that consists of using reconfigurable hardware devices whose configuration is controlled by an Evolutionary Algorithm (EA). Our system consists of a fully-FPGA implemented scalable EH platform, where the Reconfigurable processing Core (RC) can adaptively increase or decrease in size. Figure 1 shows the architecture of the proposed System-on-Programmable-Chip (SoPC), consisting of a MicroBlaze processor responsible of controlling the whole system operation, a Reconfiguration Engine (RE), and a Reconfigurable processing Core which is able to change its size in both height and width. This system is used to implement image filters, which are generated autonomously thanks to the evolutionary process. The system is complemented with a camera that enables the usage of the platform for real time applications.
Resumo:
NIR Hyperspectral imaging (1000-2500 nm) combined with IDC allowed the detection of peanut traces down to adulteration percentages 0.01% Contrary to PLSR, IDC does not require a calibration set, but uses both expert and experimental information and suitable for quantification of an interest compound in complex matrices. The obtained results shows the feasibility of using HSI systems for the detection of peanut traces in conjunction with chemical procedures, such as RT-PCR and ELISA