952 resultados para Homogeneous mixtures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stepwise synthesis of amino terminal pentapeptide of alamethicin, Z-Aib-Pro-Aib-Ala-Aib-OMe, by the dicyclohexylcarbodiimide mediated couplings leads to extensive racemization at the Ala and Pro residues. Racemization is largely suppressed by the use of additives like N-hydroxysuccinimide and 1-hydroxybenzotriazole. The presence of diastereomeric peptides may be detected by the observation of additional methyl ester and benzylic methylene signals in the 270 MHz 1H NMR spectra. Unambiguous spectral assignment of the signals to the diastereomers has been carried out by the synthesis and NMR studies of the D-Ala tetra and pentapeptides. The racemization at Pro is of particular relevance in view of the reported lack of inversion at C-terminal Pro on carboxyl activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosol particles play a role in the earth ecosystem and affect human health. A significant pathway of producing aerosol particles in the atmosphere is new particle formation, where condensable vapours nucleate and these newly formed clusters grow by condensation and coagulation. However, this phenomenon is still not fully understood. This thesis brings an insight to new particle formation from an experimental point of view. Laboratory experiments were conducted both on the nucleation process and physicochemical properties related to new particle formation. Nucleation rate measurements are used to test nucleation theories. These theories, in turn, are used to predict nucleation rates in atmospheric conditions. However, the nucleation rate measurements have proven quite difficult to conduct, as different devices can yield nucleation rates with differences of several orders of magnitude for the same substances. In this thesis, work has been done to have a greater understanding in nucleation measurements, especially those conducted in a laminar flow diffusion chamber. Systematic studies of nucleation were also made for future verification of nucleation theories. Surface tensions and densities of substances related to atmospheric new particle formation were measured. Ternary sulphuric acid + ammonia + water is a proposed candidate to participate in atmospheric nucleation. Surface tensions of an alternative candidate to nucleate in boreal forest areas, sulphuric acid + dimethylamine + water, were also measured. Binary compounds, consisting of organic acids + water are possible candidates to participate in the early growth of freshly nucleated particles. All the measured surface tensions and densities were fitted with equations, thermodynamically consistent if possible, to be easily applied to atmospheric model calculations of nucleation and subsequent evolution of particle size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conversion of a metastable phase into a thermodynamically stable phase takes place via the formation of clusters. Clusters of different sizes are formed spontaneously within the metastable mother phase, but only those larger than a certain size, called the critical size, will end up growing into a new phase. There are two types of nucleation: homogeneous, where the clusters appear in a uniform phase, and heterogeneous, when pre-existing surfaces are available and clusters form on them. The nucleation of aerosol particles from gas-phase molecules is connected not only with inorganic compounds, but also with nonvolatile organic substances found in atmosphere. The question is which ones of the myriad of organic species have the right properties and are able to participate in nucleation phenomena. This thesis discusses both homogeneous and heterogeneous nucleation, having as theoretical tool the classical nucleation theory (CNT) based on thermodynamics. Different classes of organics are investigated. The members of the first class are four dicarboxylic acids (succinic, glutaric, malonic and adipic). They can be found in both the gas and particulate phases, and represent good candidates for the aerosol formation due to their low vapor pressure and solubility. Their influence on the nucleation process has not been largely investigated in the literature and it is not fully established. The accuracy of the CNT predictions for binary water-dicarboxylic acid systems depends significantly on the good knowledge of the thermophysical properties of the organics and their aqueous solutions. A large part of the thesis is dedicated to this issue. We have shown that homogeneous and heterogeneous nucleation of succinic, glutaric and malonic acids in combination with water is unlikely to happen in atmospheric conditions. However, it seems that adipic acid could participate in the nucleation process in conditions occurring in the upper troposphere. The second class of organics is represented by n-nonane and n-propanol. Their thermophysical properties are well established, and experiments on these substances have been performed. The experimental data of binary homogeneous and heterogeneous nucleation have been compared with the theoretical predictions. Although the n-nonane - n-propanol mixture is far from being ideal, CNT seems to behave fairly well, especially when calculating the cluster composition. In the case of heterogeneous nucleation, it has been found that better characterization of the substrate - liquid interaction by means of line tension and microscopic contact angle leads to a significant improvement of the CNT prediction. Unfortunately, this can not be achieved without well defined experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleation is the first step of a first order phase transition. A new phase is always sprung up in nucleation phenomena. The two main categories of nucleation are homogeneous nucleation, where the new phase is formed in a uniform substance, and heterogeneous nucleation, when nucleation occurs on a pre-existing surface. In this thesis the main attention is paid on heterogeneous nucleation. This thesis wields the nucleation phenomena from two theoretical perspectives: the classical nucleation theory and the statistical mechanical approach. The formulation of the classical nucleation theory relies on equilibrium thermodynamics and use of macroscopically determined quantities to describe the properties of small nuclei, sometimes consisting of just a few molecules. The statistical mechanical approach is based on interactions between single molecules, and does not bear the same assumptions as the classical theory. This work gathers up the present theoretical knowledge of heterogeneous nucleation and utilizes it in computational model studies. A new exact molecular approach on heterogeneous nucleation was introduced and tested by Monte Carlo simulations. The results obtained from the molecular simulations were interpreted by means of the concepts of the classical nucleation theory. Numerical calculations were carried out for a variety of substances nucleating on different substances. The classical theory of heterogeneous nucleation was employed in calculations of one-component nucleation of water on newsprint paper, Teflon and cellulose film, and binary nucleation of water-n-propanol and water-sulphuric acid mixtures on silver nanoparticles. The results were compared with experimental results. The molecular simulation studies involved homogeneous nucleation of argon and heterogeneous nucleation of argon on a planar platinum surface. It was found out that the use of a microscopical contact angle as a fitting parameter in calculations based on the classical theory of heterogeneous nucleation leads to a fair agreement between the theoretical predictions and experimental results. In the presented cases the microscopical angle was found to be always smaller than the contact angle obtained from macroscopical measurements. Furthermore, molecular Monte Carlo simulations revealed that the concept of the geometrical contact parameter in heterogeneous nucleation calculations can work surprisingly well even for very small clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residual viscosity is a unique function of density for pure Freon-12 and Freon-22 vapors. Also, a plot of residual viscosity against density for Freon-12 and Freon-22 vapors exhibits a regular trend. These phenomena form the basis for predicting the viscosity of mixtures of Freon-12 and Freon-22 vapors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The viscosity of five binary gas mixtures - namely, oxygen-hydrogen, oxygen-nitrogen, oxygen-carbon dioxide, carbon dioxide-nitrogen, carbon dioxide-hydrogen - and two ternary mixtures - oxygen-nitrogen-carbon dioxide and oxygen-hydrogen-carbon dioxide - were determined at ambient temperature and pressure using an oscillating disk viscometer. The theoretical expressions of several investigators were in good agreement with the experimental results obtained with this viscometer. In the case of the ternary gas mixture oxygen-carbon dioxide-nitrogen, as long as the volumetric ratio of oxygen to carbon dioxide in the mixture was maintained at 11 to 8, the viscosity of the ternary mixture at ambient temperature and pressure remained constant irrespective of the percentage of nitrogen present in the mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate of absorption of amino acids from mixtures has been studied in the silkworm midgut by using an in vitro perfusion technique. The rates differ for individual amino acids. A characteristic absorption pattern is observed which is independent of the amino acid composition of the mixture used. The metabolic inhibitors dinitrophenol and cyanide have no effect on the amino acid transport from mixtures. Based on these results an energy-independent, carrier-mediated transport is postulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-dimensional linear, small deformation theory of elasticity solution by the direct method is developed for the free vibration of simply-supported, homogeneous, isotropic, thick rectangular plates. The solution is exact and involves determining a triply infinite sequence of eigenvalues from a doubly infinite set of closed form transcendental equations. As no restrictions are placed on the thickness variation of stresses or displacements, this formulation yields a triply infinite spectrum of frequencies, instead of only one doubly infinite spectrum by thin plate theory and three doubly infinite spectra by Mindlin's thick plate theory. Further, the present analysis yields symmetric thickness modes which neither of the approximate theories can identify. Some numerical results from the two approximate theories are compared with those from the present solution and some important conclusions regarding the effect of the assumptions made in the approximate theories are drawn. The thickness variations of stresses and displacements are also discussed. The analysis is readily extended for laminated plates of isotropic materials. Numerical results are also given for three-ply laminates, and are used to assess the accuracy of thin plate theory predictions for laminates. Extension to general lateral surface conditions and forced vibrations is indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolytic reactions of tetrasulphur tetranitride are studied in a homogeneous medium. Alkaline hydrolysis gives sulphite, thiosulphate, sulphate and sulphide whereas the products in acid hydrolysis are mainly sulphur dioxide, elemental sulphur and hydrogen sulphide, with traces of polythionates. Under optimum conditions, tetrasulphur tetranitride reacts with sulphite consuming 2 moles of sulphite per mole of sulphur nitride to give 2 moles of trithionate. The reaction of sulphur nitride with thiosulphuric acid gives pentathionate and tetrathionate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolytic reactions of esters and amides of thiosulphurous acid are investigated in a homogeneous medium. The esters are hydrolysed by alkali to give sulphide, sulphite and thiosulphate whereas the amides are resistant towards alkali. Both the esters and amides are hydrolysed by acids giving hydrogen sulphide, sulphur dioxide, polythionates and elemental sulphur. The hydrolysis of these esters and amides in presence of sulphurous acid and thiosulphuric acid gives tetrathionate and hexathionate, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elemental sulphur dissolved in organic solvents (such as chloroform, carbon tetrachloride and benzene) reacts rapidly and quantitatively, with aqueous alkali at room temperature, when this immiscible liquid mixture is homogenized by the addition of ethyl alcohol. The products of reaction under these experimental conditions are sulphide, thiosulphate and a small quantity of sulphite. A mechanism involving the intermediate formation and decomposition of dihydrogen sulphoxide, HSOH, is suggested for the reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic absorption has been studied by the pulse technique in the binary mixtures of acetic acid in water, methyl and ethyl alcohols and covers a range of 2 to 26 Mc/s. The mixtures are studied from 0 to 100% by weight of the acid. In all the three mixtures, two relaxation processes are observed, the first occurring below the frequency range of the study. The second one occurs near 20 Mc/s in the acid-water mixtures and at much higher frequencies in the other cases. It is qualitatively explained that the monomer-dimer reaction of the acetic acid giving a relaxation near 1 Mc/s has shifted to a higher frequency when mixed in a solvent thus giving rise to a second relaxation in the mixtures.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to experimentally investigate the interaction of inelastic deformation and microstructural changes of two Zr-based bulk metallic glasses (BMGs): Zr41.25Ti13.75Cu12.5Ni10Be22.5 (commercially designated as Vitreloy 1 or Vit1) and Zr46.75Ti8.25Cu7.5Ni10Be27.5 (Vitreloy 4, Vit4). High-temperature uniaxial compression tests were performed on the two Zr alloys at various strain rates, followed by structural characterization using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). Two distinct modes of mechanically induced atomic disordering in the two alloys were observed, with Vit1 featuring clear phase separation and crystallization after deformation as observed with TEM, while Vit4 showing only structural relaxation with no crystallization. The influence of the structural changes on the mechanical behaviors of the two materials was further investigated by jump-in-strain-rate tests, and flow softening was observed in Vit4. A free volume theory was applied to explain the deformation behaviors, and the activation volumes were calculated for both alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleation is the first step in a phase transition where small nuclei of the new phase start appearing in the metastable old phase, such as the appearance of small liquid clusters in a supersaturated vapor. Nucleation is important in various industrial and natural processes, including atmospheric new particle formation: between 20 % to 80 % of atmospheric particle concentration is due to nucleation. These atmospheric aerosol particles have a significant effect both on climate and human health. Different simulation methods are often applied when studying things that are difficult or even impossible to measure, or when trying to distinguish between the merits of various theoretical approaches. Such simulation methods include, among others, molecular dynamics and Monte Carlo simulations. In this work molecular dynamics simulations of the homogeneous nucleation of Lennard-Jones argon have been performed. Homogeneous means that the nucleation does not occur on a pre-existing surface. The simulations include runs where the starting configuration is a supersaturated vapor and the nucleation event is observed during the simulation (direct simulations), as well as simulations of a cluster in equilibrium with a surrounding vapor (indirect simulations). The latter type are a necessity when the conditions prevent the occurrence of a nucleation event in a reasonable timeframe in the direct simulations. The effect of various temperature control schemes on the nucleation rate (the rate of appearance of clusters that are equally able to grow to macroscopic sizes and to evaporate) was studied and found to be relatively small. The method to extract the nucleation rate was also found to be of minor importance. The cluster sizes from direct and indirect simulations were used in conjunction with the nucleation theorem to calculate formation free energies for the clusters in the indirect simulations. The results agreed with density functional theory, but were higher than values from Monte Carlo simulations. The formation energies were also used to calculate surface tension for the clusters. The sizes of the clusters in the direct and indirect simulations were compared, showing that the direct simulation clusters have more atoms between the liquid-like core of the cluster and the surrounding vapor. Finally, the performance of various nucleation theories in predicting simulated nucleation rates was investigated, and the results among other things highlighted once again the inadequacy of the classical nucleation theory that is commonly employed in nucleation studies.