839 resultados para Greenhouse gases (GHG)
Resumo:
Methane gas has been identified as the most destructive greenhouse gas (Liu et al., 2004). It was reported that the global warming potential of methane per molecule relative to CO2 is approximately 23 on a 100-year timescale or 62 over a 20-year period (IPCC, 2001). Methane has high C-H bond energy of about 439 kJ/mol and other higher alkanes (or saturated hydrocarbons) also have a very strong C-C and C-H bonds, thus making their molecules to have no empty orbitals of low energy or filled orbitals of high energy that could readily participate in chemical reactions as is the case with unsaturated hydrocarbons such as olefins and alkynes (Crabtree, 1994; Labinger & Bercaw, 2002)...
Resumo:
Nitrous oxide emissions from intensive, fertilised agricultural systems have been identified as significant contributors to both Australia's and the global greenhouse gas (GHG) budget. This is expected to increase as rates of agriculture intensification and land use change accelerate to support population growth and food production. Limited data exists on N2O trace gas fluxes from subtropical or tropical tree cropping soils critical for the development of effective mitigation strategies.This study aimed to quantify GHG emissions over two consecutive years (March 2007 to March 2009) from a 30 year (lychee) orchard in the humid subtropical region of Australia. GHG fluxes were measured using a combination of high temporal resolution automated sampling and manually sampled chambers. No fertiliser was added to the plots during the 2007 measurement season. A split application of nitrogen fertiliser (urea) was added at the rate of 265kgNha-1 during the autumn and spring of 2008. Emissions of N2O were influenced by rainfall events and seasonal temperatures during 2007 and the fertilisation events in 2008. Annual N2O emissions from the lychee canopy increased from 1.7kgN2O-Nha-1yr-1 for 2007, to 7.6kgN2O-Nha-1yr-1 following fertiliser application in 2008. This represented an emission factor of 1.56%, corrected for background emissions. The timing of the split application was found to be critical to N2O emissions, with over twice as much lost following an application in spring (2.44%) compared to autumn (EF: 1.10%). This research suggests that avoiding fertiliser application during the hot and moist spring/summer period can reduce N2O losses without compromising yields.
Resumo:
According to a study conducted by the International Maritime organisation (IMO) shipping sector is responsible for 3.3% of the global Greenhouse Gas (GHG) emissions. The 1997 Kyoto Protocol calls upon states to pursue limitation or reduction of emissions of GHG from marine bunker fuels working through the IMO. In 2011, 14 years after the adoption of the Kyoto Protocol, the Marine Environment Protection Committee (MEPC) of the IMO has adopted mandatory energy efficiency measures for international shipping which can be treated as the first ever mandatory global GHG reduction instrument for an international industry. The MEPC approved an amendment of Annex VI of the 1973 International Convention for the Prevention of Pollution from Ships (MARPOL 73/78) to introduce a mandatory Energy Efficiency Design Index (EEDI) for new ships and the Ship Energy Efficiency Management Plan (SEEMP) for all ships. Considering the growth projections of human population and world trade the technical and operational measures may not be able to reduce the amount of GHG emissions from international shipping in a satisfactory level. Therefore, the IMO is considering to introduce market-based mechanisms that may serve two purposes including providing a fiscal incentive for the maritime industry to invest in more energy efficient manner and off-setting of growing ship emissions. Some leading developing countries already voiced their serious reservations on the newly adopted IMO regulations stating that by imposing the same obligation on all countries, irrespective of their economic status, this amendment has rejected the Principle of Common but Differentiated Responsibility (the CBDR Principle), which has always been the cornerstone of international climate change law discourses. They also claimed that negotiation for a market based mechanism should not be continued without a clear commitment from the developed counters for promotion of technical co-operation and transfer of technology relating to the improvement of energy efficiency of ships. Against this backdrop, this article explores the challenges for the developing counters in the implementation of already adopted technical and operational measures.
Resumo:
Global climate change is one of the most significant environmental issues that can harm human development. One central issue for the building and construction industry to address global climate change is the development of a credible and meaningful way to measure greenhouse gas (GHG) emissions. While Publicly Available Specification (PAS) 2050, the first international GHG standard, has been proven to be successful in standardizing the quantification process, its contribution to the management of carbon labels for construction materials is limited. With the recent publication of ISO 14067: Greenhouse gases – carbon footprint of products – requirements and guidelines for quantification and communication in May 2013, it is necessary for the building and construction industry to understand the past, present and future of the carbon labelling practices for construction materials. A systematic review shows that international GHG standards have been evolving in terms of providing additional guidance on communication and comparison, as well as less flexibility on the use of carbon labels. At the same time, carbon labelling schemes have been evolving on standardization and benchmarking. In addition, future actions are needed in the aspect of raising consumer awareness, providing benchmarking, ensuring standardization and developing simulation technologies in order for carbon labelling schemes for construction materials to provide credible, accurate and transparent information on GHG emissions.
Resumo:
Land-use change, particularly clearing of forests for agriculture, has contributed significantly to the observed rise in atmospheric carbon dioxide concentration. Concern about the impacts on climate has led to efforts to monitor and curtail the rapid increase in concentrations of carbon dioxide and other greenhouse gases in the atmosphere. Internationally, much of the current focus is on the Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC). Although electing to not ratify the Protocol, Australia, as a party to the UNFCCC, reports on national greenhouse gas emissions, trends in emissions and abatement measures. In this paper we review the complex accounting rules for human activities affecting greenhouse gas fluxes in the terrestrial biosphere and explore implications and potential opportunities for managing carbon in the savanna ecosystems of northern Australia. Savannas in Australia are managed for grazing as well as for cultural and environmental values against a background of extreme climate variability and disturbance, notably fire. Methane from livestock and non-CO2 emissions from burning are important components of the total greenhouse gas emissions associated with management of savannas. International developments in carbon accounting for the terrestrial biosphere bring a requirement for better attribution of change in carbon stocks and more detailed and spatially explicit data on such characteristics of savanna ecosystems as fire regimes, production and type of fuel for burning, drivers of woody encroachment, rates of woody regrowth, stocking rates and grazing impacts. The benefits of improved biophysical information and of understanding the impacts on ecosystem function of natural factors and management options will extend beyond greenhouse accounting to better land management for multiple objectives.
Resumo:
This study elucidated the shadow price of greenhouse gas (GHG) emissions for 1,024 international companies worldwide that were surveyed from 15 industries in 37 major countries. Our results indicate that the shadow price of GHG at the firm level is much higher than indicated in previous studies. The higher shadow price was found in this study as a result of the use of Scope 3 GHG emissions data. The results of this research indicate that a firm would carry a high cost of GHG emissions if Scope 3 GHG emissions were the focus of the discussion of corporate social responsibility. In addition, such shadow prices were determined to differ substantially among countries, among sectors, and within sectors. Although a number of studies have calculated the shadow price of GHG emissions, these studies have employed country-level or industry-level data or a small sample of firm-level data in one country. This new data from a worldwide firm analysis of the shadow price of GHG emissions can play an important role in developing climate policy and promoting sustainable development.
Resumo:
The international shipping sector is a major contributor to global greenhouse gas (GHG) emissions. The International Maritime Organisation (IMO) has adopted some technical and operational measures to reduce GHG emissions from international shipping. However, these measures may not be enough to reduce the amount of GHG emissions from international shipping to an acceptable level. Therefore, the IMO Member States are currently considering a number of proposals for the introduction of market-based measures (MBMs). During the negotiation process, some leading developing countries raised questions about the probable confl ict of the proposed MBMs with the rules of the World Trade Organisation (WTO). This article comprehensively examines this issue and argues that none of the MBM proposals currently under consideration by the IMO has any confl ict with the WTO rules.
Resumo:
The type of contract model may have a significant influence on achieving project objectives, including environmental and climate change goals. This research investigates non-standard contract models impacting greenhouse gas emissions (GHG) in transport infrastructure construction in Australia. The research is based on the analysis of two case studies: an Early Contractor Involvement (ECI) contract and a Design and Construct (D&C) contract with GHG reduction requirements embedded in the contractor selection. Main findings support the use of ECIs for better integrating decisions made during the planning phase with the construction activities, and improve environmental outcomes while achieving financial and time savings. Key words: greenhouse gases reduction; road construction; contracting; ECI; D&C
Resumo:
Throughout the world, there is increasing pressure on governments, companies,regulators and standard-setters to respond to the global challenge of climate change. The growing number of regulatory requirements for organisations to disclose their greenhouse gas (GHG) emissions and emergent national, regional and international emissions trading schemes (ETSs) reflect key government responses to this challenge. Assurance of GHG emissions disclosures enhances the credibility of these disclosures and any associated trading schemes. The auditing and assurance profession has an important role to play in the provision of such assurance, highlighted by the International Auditing and Assurance Standards Board’s (IAASB) decision to develop an international GHG emissions assurance standard. This article sets out the developments to date on an international standard for the assurance of GHG emissions disclosures. It then provides information on the way Australian companies have responded to the challenge of GHG reporting and assurance. Finally, it outlines the types of assurance that assurance providers in Australia are currently providing in this area.
Resumo:
In response to current and increasing demand for assurance on greenhouse gas statements, the International Auditing and Assurance Standards Board (IAASB) released an exposure draft of a new assurance standard, ISAE 3410 'Assurance on a Greenhouse Gas Statement' (IFAC 2011), to provide comprehensive guidance on these types of greenhouse gas (GHG) assurance engagements. Internationally, approximately 50 percent of GHG statements are independently assured. The related assurance market is competitive, with the accounting profession and those outside the profession currently holding approximately equal shares. This paper highlights the characteristics of GHG assurance engagements that warrant multi-disciplinary teamwork, the unique and interdependent skill-sets that different practitioners bring to these engagements, and the market forces that create a demand for diverse providers.
Resumo:
Due to the increasing recognition of global climate change, the building and construction industry is under pressure to reduce carbon emissions. A central issue in striving towards reduced carbon emissions is the need for a practicable and meaningful yardstick for assessing and communicating greenhouse gas (GHG) results. ISO 14067 was published by the International Organization for Standardization in May 2013. By providing specific requirements in the life cycle assessment (LCA) approach, the standard clarifies the GHG assessment in the aspects of choosing system boundaries and simulating use and end-of-life phases when quantifying carbon footprint of products (CFPs). More importantly, the standard, for the first time, provides step-to-step guidance and standardized template for communicating CFPs in the form of CFP external communication report, CFP performance tracking report, CFP declaration and CFP label. ISO 14067 therefore makes a valuable contribution to GHG quantification and transparent communication and comparison of CFPs. In addition, as cradle-to-grave should be used as the system boundary if use and end-of-life phases can be simulated, ISO 14067 will hopefully promote the development and implementation of simulation technologies, with Building Information Modelling (BIM) in particular, in the building and construction industry.
Resumo:
In life cycle assessment studies, greenhouse gas (GHG) emissions from direct land-use change have been estimated to make a significant contribution to the global warming potential of agricultural products. However, these estimates have a high uncertainty due to the complexity of data requirements and difficulty in attribution of land-use change. This paper presents estimates of GHG emissions from direct land-use change from native woodland to grazing land for two beef production regions in eastern Australia, which were the subject of a multi-impact life cycle assessment study for premium beef production. Spatially- and temporally consistent datasets were derived for areas of forest cover and biomass carbon stocks using published remotely sensed tree-cover data and regionally applicable allometric equations consistent with Australia's national GHG inventory report. Standard life cycle assessment methodology was used to estimate GHG emissions and removals from direct land-use change attributed to beef production. For the northern-central New South Wales region of Australia estimates ranged from a net emission of 0.03 t CO2-e ha-1 year-1 to net removal of 0.12 t CO2-e ha-1 year-1 using low and high scenarios, respectively, for sequestration in regrowing forests. For the same period (1990-2010), the study region in southern-central Queensland was estimated to have net emissions from land-use change in the range of 0.45-0.25 t CO2-e ha-1 year-1. The difference between regions reflects continuation of higher rates of deforestation in Queensland until strict regulation in 2006 whereas native vegetation protection laws were introduced earlier in New South Wales. On the basis of liveweight produced at the farm-gate, emissions from direct land-use change for 1990-2010 were comparable in magnitude to those from other on-farm sources, which were dominated by enteric methane. However, calculation of land-use change impacts for the Queensland region for a period starting 2006, gave a range from net emissions of 0.11 t CO2-e ha-1 year-1 to net removals of 0.07 t CO2-e ha-1 year-1. This study demonstrated a method for deriving spatially- and temporally consistent datasets to improve estimates for direct land-use change impacts in life cycle assessment. It identified areas of uncertainty, including rates of sequestration in woody regrowth and impacts of land-use change on soil carbon stocks in grazed woodlands, but also showed the potential for direct land-use change to represent a net sink for GHG.
Resumo:
If the land sector is to make significant contributions to mitigating anthropogenic greenhouse gas (GHG) emissions in coming decades, it must do so while concurrently expanding production of food and fiber. In our view, mathematical modeling will be required to provide scientific guidance to meet this challenge. In order to be useful in GHG mitigation policy measures, models must simultaneously meet scientific, software engineering, and human capacity requirements. They can be used to understand GHG fluxes, to evaluate proposed GHG mitigation actions, and to predict and monitor the effects of specific actions; the latter applications require a change in mindset that has parallels with the shift from research modeling to decision support. We compare and contrast 6 agro-ecosystem models (FullCAM, DayCent, DNDC, APSIM, WNMM, and AgMod), chosen because they are used in Australian agriculture and forestry. Underlying structural similarities in the representations of carbon flows though plants and soils in these models are complemented by a diverse range of emphases and approaches to the subprocesses within the agro-ecosystem. None of these agro-ecosystem models handles all land sector GHG fluxes, and considerable model-based uncertainty exists for soil C fluxes and enteric methane emissions. The models also show diverse approaches to the initialisation of model simulations, software implementation, distribution, licensing, and software quality assurance; each of these will differentially affect their usefulness for policy-driven GHG mitigation prediction and monitoring. Specific requirements imposed on the use of models by Australian mitigation policy settings are discussed, and areas for further scientific development of agro-ecosystem models for use in GHG mitigation policy are proposed.
Resumo:
There is an increased interest in measuring the amount of greenhouse gases produced by farming practices . This paper describes an integrated solar powered Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system for greenhouse gas emissions in agricultural lands. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the unmanned aerial system (UAS)as well as a data management platform to store, analyze and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications at a relatively low operational cost. In particular, agricultural environments are increasingly subject to emissions mitigation policies. Accurate measurements of CH4 and CO2 with its temporal and spatial variability can provide farm managers key information to plan agricultural practices. A video of the bench and flight test performed can be seen in the following link: https://www.youtube.com/watch?v=Bwas7stYIxQ
Resumo:
The study focuses on the potential roles of the brick making industries in Sudan in deforestation and greenhouse gas emission due to the consumption of biofuels. The results were based on the observation of 25 brick making industries from three administrative regions in Sudan namely, Khartoum, Kassala and Gezira. The methodological approach followed the procedures outlined by the Intergovernmental Panel on Climate Change (IPCC). For predicting a serious deforestation scenario, it was also assumed that all of wood use for this particular purpose is from unsustainable sources. The study revealed that the total annual quantity of fuelwood consumed by the surveyed brick making industries (25) was 2,381 t dm. Accordingly, the observed total potential deforested wood was 10,624 m3, in which the total deforested round wood was 3,664 m3 and deforested branches was 6,961 m3. The study observed that a total of 2,990 t biomass fuels (fuelwood and dung cake) consumed annually by the surveyed brick making industries for brick burning. Consequently, estimated total annual emissions of greenhouse gases were 4,832 t CO2, 21 t CH4, 184 t CO, 0.15 t N20, 5 t NOX and 3.5 t NO while the total carbon released in the atmosphere was 1,318 t. Altogether, the total annual greenhouse gases emissions from biomass fuels burning was 5,046 t; of which 4,104 t from fuelwood and 943 t from dung cake burning. According to the results, due to the consumption of fuelwood in the brick making industries (3,450 units) of Sudan, the amount of wood lost from the total growing stock of wood in forests and trees in Sudan annually would be 1,466,000 m3 encompassing 505,000 m3 round wood and 961,000 m3 branches annually. By considering all categories of biofuels (fuelwood and dung cake), it was estimated that, the total emissions from all the brick making industries of Sudan would be 663,000 t CO2, 2,900 t CH4, 25,300 t CO, 20 t N2O, 720 t NOX and 470 t NO per annum, while the total carbon released in the atmosphere would be 181,000 t annually.