922 resultados para Glycol methacrylate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(acrylic acid-co-sodium acrylate-co-acrylamide) superabsorbent polymers (SAPs) cross-linked with ethylene glycol dimethacrylate (EGDMA) were synthesized by inverse suspension polymerization. The SAPs were swollen in DI water, and it was found that the equilibrium swelling capacities varied with the acrylamide content. The SAPs were subjected to reversible swelling/deswelling cycles in DI water and aqueous NaCl solution, respectively. The effect of the addition of an electrolyte on the swelling of the SAP was explored. The equilibrium swelling capacity of the SAPs was found to decrease with increasing concentration of added electrolyte in the swelling medium. The effect of the particle size of the dry SAPs on the swelling properties was also investigated. A first order model was used to describe the kinetics of swelling/deswelling, and the equilibrium swelling capacity, limiting swelling capacity, and swelling/deswelling rate coefficients were determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the electrical anisotropic transport properties of poly(methyl methacrylate) infiltrated aligned carbon nanotube mats. The anisotropy in the resistivity increases with decreasing temperature and the conduction mechanism in the parallel and perpendicular direction is different. Magnetoresistance (MR) studies also suggest anisotropic behavior of the infiltrated mats. Though MR is negative, an upturn is observed when the magnetic field is increased. This is due to the interplay of electron weak localization and electron-electron interactions mechanisms. Overall, infiltrated carbon nanotube mat is a good candidate for anisotropically conductive polymer composite and a simple fabrication method has been reported. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3675873]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentration of a nonionic surfactant and water pH were varied in an oil-in-water emulsion to minimize the friction coefficient between a steel ball sliding on a steel flat. At a surfactant concentration near the CMC (critical micelle concentration) the oil droplet size was found to be minimum. In this paper we study the microstructure of the surfactant molecules self-assembled on the steel substrate in water to comment on the ability of the surfactant aggregate to attract and retain oil. We find that a near semicylindrical hemimiceller microstructure with hydrocarbon tails projecting into bulk water as obtained at CMC in near neutral water is best able to capture and retain oil in yielding a low coefficient of friction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work demonstrates a novel strategy to synthesize orthogonally bio-engineered magnetonanohybrids (MNPs) through the design of versatile, biocompatible linkers whose structure includes: (i) a robust anchor to bind with metal-oxide surfaces; (ii) tailored surface groups to act as spacers and (iii) a general method to implement orthogonal functionalizations of the substrate via ``click chemistry''. Ligands that possess the synthetic generality of features (i)-(iii) are categorized as ``universal ligands''. Herein, we report the synthesis of a novel, azido-terminated poly(ethylene glycol) (PEG) silane that can easily self-assemble on MNPs through hetero-condensation between surface hydroxyl groups and the silane end of the ligand, and simultaneously provide multiple clickable sites for high density, chemoselective bio-conjugation. To establish the universal-ligand-strategy, we clicked alkyl-functionalized folate onto the surface of PEGylated MNPs. By further integrating a near-infrared fluorescent (NIRF) marker (Alexa-Fluor 647) with MNPs, we demonstrated their folate-receptor mediated internalization inside cancer cells and subsequent translocation into lysosomes and mitochondria. Ex vivo NIRF imaging established that the azido-PEG-silane developed in course of the study can effectively reduce the sequestration of MNPs by macrophage organs (viz. liver and spleen). These folate-PEG-MNPs were not only stealth and noncytotoxic but their dual optical and magnetic properties aided in tracking their whereabouts through combined magnetic resonance and optical imaging. Together, these results provided a strong motivation for the future use of the ``universal ligand'' strategy towards development of ``smart'' nanohybrids for theragnostic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly{(N,N-(dimethylamino)ethyl methacrylate]-co-(methyl methacrylate)} copolymers of various compositions were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization at 70 degrees C in N,N-dimethylformamide. The polymer molecular weights and molecular weight distributions were obtained from size exclusion chromatography, and they indicated the controlled nature of the RAFT polymerizations; the polydispersity indices are in the range 1.11.3. The reactivity ratios of N,N-(dimethylamino)ethyl methacrylate (DMAEMA) and methyl methacrylate (MMA) (rDMAEMA = 0.925 and rMMA = 0.854) were computed by the extended KelenTudos method at high conversions, using compositions obtained from 1H NMR. The pH- and temperature-sensitive behaviour were studied in aqueous solution to confirm dual responsiveness of these copolymers. The thermal properties of the copolymers with various compositions were investigated by differential scanning calorimetry and thermogravimetric analysis. The kinetics of thermal degradation were determined by Friedmann and Chang techniques to evaluate various parameters such as the activation energy, the order and the frequency factor. (c) 2012 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles are used for a number of biomedical applications. In this work we report the synthesis of folic acid (FA) modified polyethylene glycol (PEG) functionalized hydroxyapatite (HAp) nanoparticles. The anticancer drug, paclitaxel, is attached to the folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles and the in vitro drug release is analyzed. The surface modification and functionalization is confirmed by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA) and UV spectroscopy. The importance of the paper is the investigation of the release behavior of paclitaxel conjugated folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles. The results show an initial rapid release and then a sustained release. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecular dynamics (MD) investigation of LiCl in water, methanol, and ethylene glycol (EG) at 298 K is reported. Several; structural and dynamical properties of the ions as well as the solvent such as self-diffusivity, radial distribution functions, void and neck distributions, velocity autocorrelation functions, and mean residence times of solvent in the first solvation shell have been computed. The results show that the reciprocal relationship between the self-diffusivity of the ions and the viscosity is valid in almost all solvents with the exception of water. From an analysis of radial distribution functions and coordination numbers the nature of hydrogen bonding within the solvent and its influence on the void and neck distribution becomes evident. It is seen that the solvent solvent interaction is important in EG while solute solvent interactions dominate in water and methanol. From Voronoi tessellation, it is seen that the voids and necks within methanol are larger as compared to those within water or EG. On the basis of the void and neck distributions obtained from MD simulations and literature experimental data of limiting ion conductivity for various ions of different sizes we show that there is a relation between the void and neck radius on e one hand and dependence of conductivity on the ionic radius on the other. It is shown that the presence of large diameter voids and necks in methanol is responsible for maximum in limiting ion conductivity (lambda(0)) of TMA(+), while in water in EG, the maximum is seen for Rb+. In the case of monovalent anions, maximum in lambda(0) as a function ionic radius is seen for Br- in water EG but for the larger ClO4- ion in methanol. The relation between the void and neck distribution and the variation in lambda(0) with ionic radius arises via the Levitation effect which is discussed. These studies show the importance of the solvent structure and the associated void structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural dynamics, dielectric permittivity and ferroelectric properties in poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) (PVDF/PMMA) blends with respect to crystalline morphology was systematically investigated in presence of amine functionalized MWNTs (NH2-MWNTs) using dielectric spectroscopy. The crystalline morphology and the crystallization driven demixing in the blends was assessed by light microscopy (LM), wide angle X-ray diffraction (WXRD) and, in situ, by shear rheology. The crystal nucleation activity of PVDF was greatly induced by NH2-MWNTs, which also showed two distinct structural relaxations in dielectric loss owing to mobility confinement of PVDF chains and smaller cooperative lengths. The presence of crystal-amorphous interphase was supported by the presence of interfacial polarization at lower frequencies in the dielectric loss spectra. On contrary, the control blends showed a single broad relaxation at higher frequency due to defective crystal nuclei. This was further supported by monitoring the dielectric relaxations during isothermal crystallization of PVDF in the blends. These observations were addressed with respect to the spherulite sizes which were observed to be larger in case of blends with NH2-MWNTs. Higher dielectric permittivity with minimal losses was also observed in blends with NH2-MWNTs as compared to neat PVDF. Polarization obtained using P-E (polarization-electric field) hysteresis loops was higher in case of blends with NH2-MWNTs in contrast to control blends and PVDF. These observations were corroborated with the charge trapped at the crystal-amorphous interphase and larger crystal sizes in the blends with NH2-MWNTs. The microstructure and localization of MWNTs were assessed using SEM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal degradation of poly(n-butyl methacrylate-co-alkyl acrylate) was compared with ultrasonic degradation. For this purpose, different compositions of poly (n-butyl methacrylate-co-methyl acrylate) (PBMAMA) and a particular composition of poly(n-butyl methacrylate-co-ethyl acrylate) (PBMAEA) and poly(n-butyl methacrylate-co-butyl acrylate) (PBMABA) were synthesized and characterized. The thermal degradation of polymers shows that the poly(alkyl acrylates) degrade in a single stage by random chain scission and poly(n-butyl methacrylate) degrades in two stages. The number of stages of thermal degradation of copolymers was same as the majority component of the copolymer. The activation energy corresponding to random chain scission increased and then decreased with an increase of n-butyl methacrylate fraction in copolymer. The effect of methyl acrylate content, alkyl acrylate substituent, and solvents on the ultrasonic degradation of these copolymers was investigated. A continuous distribution kinetics model was used to determine the degradation rate coefficients. The degradation rate coefficient of PBMAMA varied nonlinearly with n-butyl methacrylate content. The degradation of poly (n-butyl methacrylate-co-alkyl acrylate) followed the order: PBMAMA < PBMAEA < PBMABA. The variation in the degradation rate constant with composition of the copolymer was discussed in relation to the competing effects of the stretching of the polymer in solution and the electron displacement in the main chain. (C) 2012 Society of Plastics Engineers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(methyl methacrylate) (PMMA) and CaCu3Ti4O12 (CCTO) composites were fabricated via melt mixing followed by hot pressing technique. These were characterized using X-ray diffraction, thermo gravimetric, thermo mechanical, differential scanning calorimetry, fourier transform infrared (FTIR) and Impedance analyser for their structural, thermal and dielectric properties. Composites were found to have better thermal stability than that of pure PMMA. However, there was no significant difference in the glass transition (T (g) ) temperature between the polymer and the composite. The appearance of additional vibrational frequencies in the range 400-600 cm(-1) in FTIR spectra indicated a possible interaction between PMMA and CCTO. The composite, with 38 vol% of CCTO (in PMMA), exhibited remarkably low dielectric loss at high frequencies and the low-frequency relaxation is attributed to the interfacial polarization/MWS effect. The origin of AC conductivity particularly in the high-frequency region was attributed to the electronic polarization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites comprising Poly(Methyl Methacrylate) (PMMA) and CaCu3Ti4O12 (CCTO) via melt mixing followed by hot pressing were fabricated. These were characterized using X-ray diffraction, thermo gravimetric, scanning electron microscopy, and Impedance analyzer for their structural, morphology, and dielectric properties. Composites were found to have better thermal stability than that of pure PMMA. The composite, with 38 Vol % of CCTO (in PMMA), exhibited remarkably low dielectric loss at high frequencies and the low frequency relaxation is attributed to the space charge polarization/MWS effect. Theoretical models were employed to rationalize the dielectric behavior of these composites. At higher temperatures, the relaxation peak shifts to higher frequencies, due to the merging of both beta and alpha relaxations into a single dielectric dispersion peak. The AC conductivity in the high frequency region was attributed to the electronic polarization. POLYM. ENG. SCI., 54:551-558, 2014. (c) 2013 Society of Plastics Engineers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with different surface-functionalized multiwall carbon nanotubes (MWNTs) were prepared by solution blending to design materials with tunable EMI (electromagnetic interference) shielding. Different MWNTs like pristine, amine (similar to NH2), and carboxyl acid (similar to COOH) functionalized were incorporated in the polymer by solution blending. The specific interaction driven localization of MWNTs in the blend during annealing was monitored using contact mode AFM (atomic force microscopy) on thin films. Surface composition of the phase separated blends was further evaluated using X-ray photoelectron spectroscopy (XPS). The localization of MWNTs in a given phase in the bulk was further supported by selective dissolution experiments. Solution-casted PS/PMMA (50/50, wt/wt) blend exhibited a cocontinuous morphology on annealing for 30 min, whereas on longer annealing times it coarsened into matrix-droplet type of morphology. Interestingly, both pristine MWNTs and NH2-MWNTs resulted in interconnected structures of PMMA in PS matrix upon annealing, whereas COOH-MWNTs were localized in the PMMA droplets. Room-temperature electrical conductivity and electromagnetic shielding effectiveness (SE) were measured in a broad range of frequency. It was observed that both electrical conductivity and SE were strongly contingent on the type of surface functional groups on the MWNTs. The thermal conductivity of the blends was measured with laser flash technique at different temperatures. Interestingly, the SE for blends with pristine and NH2-MWNTs was >-24 dB at room temperature, which is commercially important, and with very marginal variation in thermal conductivity in the temperature range of 303-343 K. The gelation of MWNTs in the blends resulted in a higher SE than those obtained using the composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Click" chemistry has become an efficient avenue to unimolecular polymeric nanoparticles through the self-crosslinking of individual polymer chains containing appropriate functional groups. Herein we report the synthesis of ultra-small (7 nm in size) polymethyl methacrylate (PMMA) nanoparticles (NPs) by the "metal-free" cross-linking of PMMA-precursor chains prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization containing beta-ketoester functional groups. Intramolecular collapse was performed by the one-pot reaction of beta-ketoester moieties with alkyl diamines in tetrahydrofurane at r.t. (i.e., by enamine formation). The collapsing process was followed by size exclusion chromatography and by nuclear magnetic resonance spectroscopy. The size of the resulting PMMA-NPs was determined by dynamic light scattering. Enamine "click" chemistry increases the synthetic toolbox for the efficient synthesis of metal-free, ultra-small polymeric NPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excimer laser ablation technique was introduced into this work to fabricate a passive planar micromixer on the PMMA substrate. T-junction shaped and width-changed S-shaped microchannels were both designed in this micromixer to enhance mixing effect. The mixing experiment of distilled water and Rhodamine B with injection flow rate of 500 and 1,500 mu m/s validates the mixing effectivity of this micromixer, and indicates the feasibility of excimer laser ablation in the microfabrication of mu-TAS device.