845 resultados para Game laws
Resumo:
The 48 hour game making challenge has been running since its inception at the NEXT LEVEL Festival in 2004. It is curated by Truna aka j. Turner and Lubi Thomas and sees teams of both future game makers and industry professionals going head to head under pressure to produce playable games within the time period. The 48 hour is supported by the International Game Developers Association (Brisbane Chapter)and the Creative Industries Precincts as part of their public programs. It is a curated event which engages industry with Brisbane educational institutes and which fosters the Australian Games Industry
Resumo:
Reviews the background to China's enactment of the Anti-Monopoly Law in 2007 and compares the debate surrounding the proposed introduction of similar legislation in Hong Kong. Examines the main issues arising during the Law's 13 year drafting stage, its key provisions and the remaining areas of uncertainty concerning its enforcement. Discusses ongoing efforts to introduce competition law regulations in Hong Kong, the main features of the draft General Competition Law and the shortcomings of its approach to penalties and exemptions.
Resumo:
"Provides a comprehensive overview of the law of torts for law students. The legislative reform brought about by the IPP Committee recommendations are included and commented upon." -- Libraries Australia
Resumo:
Market failures involving the sale of complex merchandise, such as residential property, financial products and credit, have principally been attributed to information asymmetries. Existing legislative and regulatory responses were developed having regard to consumer protection policies based on traditional economic theories that focus on the notion of the ‘rational consumer’. Governmental responses therefore seek to impose disclosure obligations on sellers of complex goods or products to ensure that consumers have sufficient information upon which to make a decision. Emergent research, based on behavioural economics, challenges traditional ideas and instead focuses on the actual behaviour of consumers. This approach suggests that consumers as a whole do not necessarily benefit from mandatory disclosure because some, if not most, consumers do not pay attention to the disclosed information before they make a decision to purchase. The need for consumer policies to take consumer characteristics and behaviour into account is being increasingly recognised by governments, and most recently in the policy framework suggested by the Australian Productivity Commission
Resumo:
This paper presents the application of advanced optimization techniques to unmanned aerial system mission path planning system (MPPS) using multi-objective evolutionary algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA nondominated sorting genetic algorithm II and a hybrid-game strategy are implemented to produce a set of optimal collision-free trajectories in a three-dimensional environment. The resulting trajectories on a three-dimensional terrain are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different positions with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a hybrid-game strategy to a MOEA and for a MPPS.
Resumo:
One of the main aims in artificial intelligent system is to develop robust and efficient optimisation methods for Multi-Objective (MO) and Multidisciplinary Design (MDO) design problems. The paper investigates two different optimisation techniques for multi-objective design optimisation problems. The first optimisation method is a Non-Dominated Sorting Genetic Algorithm II (NSGA-II). The second method combines the concepts of Nash-equilibrium and Pareto optimality with Multi-Objective Evolutionary Algorithms (MOEAs) which is denoted as Hybrid-Game. Numerical results from the two approaches are compared in terms of the quality of model and computational expense. The benefit of using the distributed hybrid game methodology for multi-objective design problems is demonstrated.
Resumo:
China has been the focus of much academic and business scrutiny of late. Its economic climate is changing and its huge new market opportunities seem quite tantalizing to the would-be 'technology entrepreneur'. But China's market is a relatively immature one; it is still in the process of being opened up to real competition. The corollary of this is that, at this stage of the transitional process, there is still significant State control of market function. This article discusses Chinese competition law, the technology transfer system, how the laws are being reformed and how the technology entrepreneur fares under them. The bottom line is that while opportunities beckon, the wise entrepreneur will nevertheless continue to exercise caution.
Resumo:
This paper presents the application of advanced optimization techniques to unmanned aerial system mission path planning system (MPPS) using multi-objective evolutionary algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA nondominated sorting genetic algorithm II and a hybrid-game strategy are implemented to produce a set of optimal collision-free trajectories in a three-dimensional environment. The resulting trajectories on a three-dimensional terrain are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different positions with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a hybrid-game strategy to a MOEA and for a MPPS.
Resumo:
In this paper, the optimal design of an active flow control device; Shock Control Bump (SCB) on suction and pressure sides of transonic aerofoil to reduce transonic total drag is investigated. Two optimisation test cases are conducted using different advanced Evolutionary Algorithms (EAs); the first optimiser is the Hierarchical Asynchronous Parallel Evolutionary Algorithm (HAPMOEA) based on canonical Evolutionary Strategies (ES). The second optimiser is the HAPMOEA is hybridised with one of well-known Game Strategies; Nash-Game. Numerical results show that SCB significantly reduces the drag by 30% when compared to the baseline design. In addition, the use of a Nash-Game strategy as a pre-conditioner of global control saves computational cost up to 90% when compared to the first optimiser HAPMOEA.
Resumo:
Over recent years, Unmanned Air Vehicles or UAVs have become a powerful tool for reconnaissance and surveillance tasks. These vehicles are now available in a broad size and capability range and are intended to fly in regions where the presence of onboard human pilots is either too risky or unnecessary. This paper describes the formulation and application of a design framework that supports the complex task of multidisciplinary design optimisation of UAVs systems via evolutionary computation. The framework includes a Graphical User Interface (GUI), a robust Evolutionary Algorithm optimiser named HAPEA, several design modules, mesh generators and post-processing capabilities in an integrated platform. These population –based algorithms such as EAs are good for cases problems where the search space can be multi-modal, non-convex or discontinuous, with multiple local minima and with noise, and also problems where we look for multiple solutions via Game Theory, namely a Nash equilibrium point or a Pareto set of non-dominated solutions. The application of the methodology is illustrated on conceptual and detailed multi-criteria and multidisciplinary shape design problems. Results indicate the practicality and robustness of the framework to find optimal shapes and trade—offs between the disciplinary analyses and to produce a set of non dominated solutions of an optimal Pareto front to the designer.
Resumo:
Authorised users (insiders) are behind the majority of security incidents with high financial impacts. Because authorisation is the process of controlling users’ access to resources, improving authorisation techniques may mitigate the insider threat. Current approaches to authorisation suffer from the assumption that users will (can) not depart from the expected behaviour implicit in the authorisation policy. In reality however, users can and do depart from the canonical behaviour. This paper argues that the conflict of interest between insiders and authorisation mechanisms is analogous to the subset of problems formally studied in the field of game theory. It proposes a game theoretic authorisation model that can ensure users’ potential misuse of a resource is explicitly considered while making an authorisation decision. The resulting authorisation model is dynamic in the sense that its access decisions vary according to the changes in explicit factors that influence the cost of misuse for both the authorisation mechanism and the insider.
Coordination of empirical laws and explanatory theory using model-based reasoning in Year 10 science
Resumo:
The present paper focuses on some interesting classes of process-control games, where winning essentially means successfully controlling the process. A master for one of these games is an agent who plays a winning strategy. In this paper we investigate situations in which even a complete model (given by a program) of a particular game does not provide enough information to synthesize—even incrementally—a winning strategy. However, if in addition to getting a program, a machine may also watch masters play winning strategies, then the machine is able to incrementally learn a winning strategy for the given game. Studied are successful learning from arbitrary masters and from pedagogically useful selected masters. It is shown that selected masters are strictly more helpful for learning than are arbitrary masters. Both for learning from arbitrary masters and for learning from selected masters, though, there are cases where one can learn programs for winning strategies from masters but not if one is required to learn a program for the master's strategy itself. Both for learning from arbitrary masters and for learning from selected masters, one can learn strictly more by watching m+1 masters than one can learn by watching only m. Last, a simulation result is presented where the presence of a selected master reduces the complexity from infinitely many semantic mind changes to finitely many syntactic ones.