1000 resultados para Equações diferenciais Parciais
Resumo:
Neste trabalho, é desenvolvido um método de localização de descargas parciais, em transformadores de potência, baseado no algoritmo GPS (Global Positioning System). Para a análise da estrutura, foi desenvolvido um solftware, no qual as equações diferenciais que representam a propagação de ondas acústicas são resolvidas numericamente através do método Acoustic Finite Difference Time Domain (AFDTD), cujo domínio computacional é truncado através da técnica CPML (Convolutional Perfectly Matched Layer). Os resultados obtidos são comparados a estimativas produzidas utilizando-se sinais elétricos relativos às descargas.
Resumo:
As primeiras noções do que é uma equação surgem logo nos primeiros anos do ensino secundário, onde se estudam as equações algébricas dos primeiro e segundo graus. Para lá do carácter formativo de tais conceitos, a verdade é que a grande maioria dos alunos que prosseguem estudos superiores onde a Matemática continua a ser estudada, não mais voltam a abordar o aperfeiçoamento do que vem já de trás, muito em especial as equações do tipo algébrico, completas e de grau superior ao segundo.
Resumo:
Fundamentalmente, o presente trabalho faz uma análise elástica linear de pontes ou vigas curvas assimétricas de seção transversal aberta e de parede fina, com propriedades físicas, geométricas e raio de curvatura constantes ao longo do eixo baricêntrico. Para tanto, utilizaram-se as equações diferenciais de VLASOV considerando o acoplamento entre as deformações nas direções vertical, transversal, axial de torcão nal. Na solução do sistema de quatro equações com derivadas parciais foi utilizado um apropriado método numérico de integração (Diferenças Finitas Centrais). A análise divide-se, basicamente, em dois tipos: análise DINÂMICA e ESTATICA. Ambas são utilizadas também na determinação do coeficiente de impacto (C.M.D.). A primeira refere-se tanto na determinação das características dinâmicas básicas (frequências naturais e respectivos modos de vibração), como também na determinação da resposta dinâmica da viga, em tensões e deformações, para cargas móveis arbitrárias. Vigas com qualquer combinação das condições de contorno, incluindo bordos rotulados e engastados nas três direções de flexão e na torção, são consideradas. 0s resultados da análise teórica, obtidos pela aplicação de programas computacionais implementados em microcomputador (análise estática) e no computador B-6700 (análise dinâmica), são comparados tanto com os da bibliografia técnica como também com resultados experimentais, apresentando boa correlação.
Resumo:
Neste trabalho estudamos um sistema de equações diferenciais parabólicas que modelam um processo de difusão-reação em duas dimensões da mistura molecular e reação química irreverssível de um só passo entre duas espécies químicas A e B para formar um produto P. Apresentamos resultados analíticos e computacionais relacionados à existência e unicidade da solução, assim como estimativas do erro local e global utilizando elementos finitos. Para os resultados analíticos usamos a teoria de semigrupos e o principio do m´aximo, e a simulação numérica é feita usando diferenças finitas centrais e o esquema simplificado de Ruge-Kutta. As estimativas do erro local para o problema semi-discretizado são estabelecidas usando normas de Sobolev, e para estimar o erro global usamos shadowing finito a posteriori. Os resultados computacionais obtidos mostram que o comportamento da solução está dentro do esperado e concorda com resultados da referências. Assim mesmo as estimativas do erro local e global são obtidas para pequenos intervalos de tempo e assumindo suficiente regularidade sobre a velocidade do fluído no qual realiza-se o processo. Destacamos que a estimativa do erro global usando shadowing finito é obtida sob hipóteses a posteriori sobre o operador do problema e o forte controle da velocidade numa vizinhança suficientemente pequena.
Resumo:
A resposta impulso é utilizada como ferramenta padrão no estudo direto de sistemas concentrados, discretos e distribuídos de ordem arbitrária. Esta abordagem leva ao desenvolvimento de uma plataforma unificada para a obtenção de respostas dinâmicas. Em particular, as respostas forçadas dos sistemas são decompostas na soma de uma resposta permanente e de uma resposta livre induzida pelos valores iniciais da resposta permanente. A teoria desenvolve-se de maneira geral e direta para sistemas de n-ésima ordem, introduzindo-se a base dinâmica gerada pela resposta impulso na forma padrão e normalizada, sem utilizar-se a formulação de estado, através da qual reduz-se um sistema de ordem superior para um sistema de primeira ordem. Considerou-se sistemas de primeira ordem a fim de acompanhar-se os muitos resultados apresentados na literatura através da formulação de espaço de estado. Os métodos para o cálculo da resposta impulso foram classificados em espectrais, não espectrais e numéricos. A ênfase é dada aos métodos não espectrais, pois a resposta impulso admite uma fórmula fechada que requer o uso de três equações características do tipo algébrica, diferencial e em diferenças Realizou-se simulações numéricas onde foram apresentados modelos vibratórios clássicos e não clássicos. Os sistemas considerados foram sistemas do tipo concentrado, discreto e distribuído. Os resultados da decomposição da resposta dinâmica de sistemas concentrados diante de cargas harmônicas e não harmônicas foram apresentados em detalhe. A decomposição para o caso discreto foi desenvolvida utilizando-se os esquemas de integração numérica de Adams-Basforth, Strömer e Numerov. Para sistemas distribuídos, foi considerado o modelo de Euler-Bernoulli com força axial, sujeito a entradas oscilatórias com amplitude triangular, pulso e harmônica. As soluções permanentes foram calculadas com o uso da função de Green espacial. A resposta impulso foi aproximada com o uso do método espectral.
Resumo:
Neste trabalho, apresentaremos uma solução analítica, aplicando o método da decomposição de Adomian, para as equações da cinética pontual para reatividade arbitrária, um sistema de equações diferenciais ordinárias do tipo "Stiff". Apresen- taremos, ainda, simulações numéricas para as reatividades do tipo constante, linear, senoidal e exponencial, bem como faremos comparações com resultados disponíveis na literatura.
Resumo:
Sistemas dinâmicos são todos os sistemas que evoluem no tempo, qualquer que seja a sua natureza, isto é, sistemas fisícos, biológicos, químicos, sociais, económicos, etc.. Esta evoluçãoo pode ser descrita (modelada) por equaçõess de diferenças, uma vez que esse tempo é muitas vezes medido em intervalos discretos. As equações de diferenças aparecem também quando se estuda métodos para a discretização de equações diferenciais. Assim, este trabalho tem por principal objectivo estudar as soluções de alguns tipos de equações de diferenças. Para isso, começa-se por introduzir o conceito de diferença e a sua relação com as equações de diferenças. Em seguida, determina-se a solução geral das todas as equações lineares de primeira ordem, bem como o estudo do seu comportamento assimptótico. Prossegue-se, desenvolvendo as principais técnicas para determinar a soluçãoo de equações de diferenças lineares de qualquer ordem. Em particular, estudam-se as equações com coeficientes constantes. Depois de se desenvolver a teoria básica dos sistemas lineares de equações de diferenças, particulariza-se aos sistemas lineares autónomos,com apenas duas variáveis dependentes, fazendo assim o estudo do comportamento das soluções no plano de fases. Por fim, utiliza-se a transformada Z como uma ferramenta que permite resolver equações de diferenças, em especial as equações de tipo convolução.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática Universitária - IGCE