819 resultados para ESTIMATOR
Resumo:
The Automated Estimator and LCADesign are two early examples of nD modelling software which both rely on the extraction of quantities from CAD models to support their further processing. The issues of building information modelling (BIM), quantity takeoff for different purposes and automating quantity takeoff are discussed by comparing the aims and use of the two programs. The technical features of the two programs are also described. The technical issues around the use of 3D models is described together with implementation issues and comments about the implementation of the IFC specifications. Some user issues that emerged through the development process are described, with a summary of the generic research tasks which are necessary to fully support the use of BIM and nD modelling.
Resumo:
The indoor air quality (IAQ) in buildings is currently assessed by measurement of pollutants during building operation for comparison with air quality standards. Current practice at the design stage tries to minimise potential indoor air quality impacts of new building materials and contents by selecting low-emission materials. However low-emission materials are not always available, and even when used the aggregated pollutant concentrations from such materials are generally overlooked. This paper presents an innovative tool for estimating indoor air pollutant concentrations at the design stage, based on emissions over time from large area building materials, furniture and office equipment. The estimator considers volatile organic compounds, formaldehyde and airborne particles from indoor materials and office equipment and the contribution of outdoor urban air pollutants affected by urban location and ventilation system filtration. The estimated pollutants are for a single, fully mixed and ventilated zone in an office building with acceptable levels derived from Australian and international health-based standards. The model acquires its dimensional data for the indoor spaces from a 3D CAD model via IFC files and the emission data from a building products/contents emissions database. This paper describes the underlying approach to estimating indoor air quality and discusses the benefits of such an approach for designers and the occupants of buildings.
Resumo:
The endeavour to obtain estimates of durability of components for use in lifecycle assessment or costing and infrastructure and maintenance planning systems is large. The factor method and the reference service life concept provide a very valuable structure, but do not resolve the central dilemma of the need to derive an extensive database of service life. Traditional methods of estimating service life, such as dose functions or degradation models, can play a role in developing this database, however the scale of the problem clearly indicates that individual dose functions cannot be derived for each component in each different local and geographic setting. Thus, a wider range of techniques is required in order to devise reference service life. This paper outlines the approaches being taken in the Cooperative Research Centre for Construction Innovation project to predict reference service life. Approaches include the development of fundamental degradation and microclimate models, the development of a situation-based reasoning ‘engine’ to vary the ‘estimator’ of service life, and the development of a database on expert performance (Delphi study). These methods should be viewed as complementary rather than as discrete alternatives. As discussed in the paper, the situation-based reasoning approach in fact has the possibility of encompassing all other methods.
Resumo:
This paper discusses the issues with sharing information between different disciplines in collaborative projects. The focus is on the information itself rather than the wider issues of collaboration. A range of projects carried out by the Cooperative Research Centre for Construction Innovation (CRC CI) in Australia is used to illustrate the issues.
Resumo:
The ability to forecast machinery failure is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models for forecasting machinery health based on condition data. Although these models have aided the advancement of the discipline, they have made only a limited contribution to developing an effective machinery health prognostic system. The literature review indicates that there is not yet a prognostic model that directly models and fully utilises suspended condition histories (which are very common in practice since organisations rarely allow their assets to run to failure); that effectively integrates population characteristics into prognostics for longer-range prediction in a probabilistic sense; which deduces the non-linear relationship between measured condition data and actual asset health; and which involves minimal assumptions and requirements. This work presents a novel approach to addressing the above-mentioned challenges. The proposed model consists of a feed-forward neural network, the training targets of which are asset survival probabilities estimated using a variation of the Kaplan-Meier estimator and a degradation-based failure probability density estimator. The adapted Kaplan-Meier estimator is able to model the actual survival status of individual failed units and estimate the survival probability of individual suspended units. The degradation-based failure probability density estimator, on the other hand, extracts population characteristics and computes conditional reliability from available condition histories instead of from reliability data. The estimated survival probability and the relevant condition histories are respectively presented as “training target” and “training input” to the neural network. The trained network is capable of estimating the future survival curve of a unit when a series of condition indices are inputted. Although the concept proposed may be applied to the prognosis of various machine components, rolling element bearings were chosen as the research object because rolling element bearing failure is one of the foremost causes of machinery breakdowns. Computer simulated and industry case study data were used to compare the prognostic performance of the proposed model and four control models, namely: two feed-forward neural networks with the same training function and structure as the proposed model, but neglected suspended histories; a time series prediction recurrent neural network; and a traditional Weibull distribution model. The results support the assertion that the proposed model performs better than the other four models and that it produces adaptive prediction outputs with useful representation of survival probabilities. This work presents a compelling concept for non-parametric data-driven prognosis, and for utilising available asset condition information more fully and accurately. It demonstrates that machinery health can indeed be forecasted. The proposed prognostic technique, together with ongoing advances in sensors and data-fusion techniques, and increasingly comprehensive databases of asset condition data, holds the promise for increased asset availability, maintenance cost effectiveness, operational safety and – ultimately – organisation competitiveness.
Resumo:
Modern machines are complex and often required to operate long hours to achieve production targets. The ability to detect symptoms of failure, hence, forecasting the remaining useful life of the machine is vital to prevent catastrophic failures. This is essential to reducing maintenance cost, operation downtime and safety hazard. Recent advances in condition monitoring technologies have given rise to a number of prognosis models that attempt to forecast machinery health based on either condition data or reliability data. In practice, failure condition trending data are seldom kept by industries and data that ended with a suspension are sometimes treated as failure data. This paper presents a novel approach of incorporating historical failure data and suspended condition trending data in the prognostic model. The proposed model consists of a FFNN whose training targets are asset survival probabilities estimated using a variation of Kaplan-Meier estimator and degradation-based failure PDF estimator. The output survival probabilities collectively form an estimated survival curve. The viability of the model was tested using a set of industry vibration data.
Resumo:
In this paper, we present a finite sample analysis of the sample minimum-variance frontier under the assumption that the returns are independent and multivariate normally distributed. We show that the sample minimum-variance frontier is a highly biased estimator of the population frontier, and we propose an improved estimator of the population frontier. In addition, we provide the exact distribution of the out-of-sample mean and variance of sample minimum-variance portfolios. This allows us to understand the impact of estimation error on the performance of in-sample optimal portfolios. Key Words: minimum-variance frontier; efficiency set constants; finite sample distribution
Resumo:
Biased estimation has the advantage of reducing the mean squared error (MSE) of an estimator. The question of interest is how biased estimation affects model selection. In this paper, we introduce biased estimation to a range of model selection criteria. Specifically, we analyze the performance of the minimum description length (MDL) criterion based on biased and unbiased estimation and compare it against modern model selection criteria such as Kay's conditional model order estimator (CME), the bootstrap and the more recently proposed hook-and-loop resampling based model selection. The advantages and limitations of the considered techniques are discussed. The results indicate that, in some cases, biased estimators can slightly improve the selection of the correct model. We also give an example for which the CME with an unbiased estimator fails, but could regain its power when a biased estimator is used.
Resumo:
This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an Inertial Measure Unit (IMU) and gyros sensors. First, we explore the applications of the unified theory for central catadioptric cameras for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV’s attitude. Then we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Additionally, we show the use of a stereo system to calculate the aircraft height and to measure the UAV’s motion. Finally, we present a visual tracking system based on Fuzzy controllers working in both a UAV and a camera pan and tilt platform. Every part is tested using the UAV COLIBRI platform to validate the different approaches, which include comparison of the estimated data with the inertial values measured onboard the helicopter platform and the validation of the tracking schemes on real flights.
Resumo:
The load–frequency control (LFC) problem has been one of the major subjects in a power system. In practice, LFC systems use proportional–integral (PI) controllers. However since these controllers are designed using a linear model, the non-linearities of the system are not accounted for and they are incapable of gaining good dynamical performance for a wide range of operating conditions in a multi-area power system. A strategy for solving this problem because of the distributed nature of a multi-area power system is presented by using a multi-agent reinforcement learning (MARL) approach. It consists of two agents in each power area; the estimator agent provides the area control error (ACE) signal based on the frequency bias estimation and the controller agent uses reinforcement learning to control the power system in which genetic algorithm optimisation is used to tune its parameters. This method does not depend on any knowledge of the system and it admits considerable flexibility in defining the control objective. Also, by finding the ACE signal based on the frequency bias estimation the LFC performance is improved and by using the MARL parallel, computation is realised, leading to a high degree of scalability. Here, to illustrate the accuracy of the proposed approach, a three-area power system example is given with two scenarios.
Resumo:
This paper investigates the patterns and determinants of life satisfaction in Germany following reunification. We implement a new fixed-effect estimator for ordinal life satisfaction in the German Socio-Economic Panel and find negative effects on life satisfaction from being recently fired, losing a spouse through either death or separation, and time spent in hospital, while we find strong positive effects from income and marriage. Using a new causal decomposition technique, we find that East Germans experienced a continued improvement in life satisfaction to which increased household incomes contributed around 12 percent. Most of the improvement is explained by better average circumstances, such as greater political freedom. For West Germans, we find little change in average life satisfaction over this period.
Resumo:
We investigate whether therewas a causal effect of income changes on the health satisfaction of East and West Germans in the years following reunification. Our data source is the German Socio-Economic Panel (GSOEP) between 1984 and 2002, and we fit a recently proposed fixed-effects ordinal estimator to our health measures and use a causal decomposition technique to account for panel attrition.We find evidence of a significant positive effect of income changes on health satisfaction, but the quantitative size of this effect is small. This is the case with respect to current income and a measure of ‘permanent’ income.
Resumo:
In this work, we investigate an alternative bootstrap approach based on a result of Ramsey [F.L. Ramsey, Characterization of the partial autocorrelation function, Ann. Statist. 2 (1974), pp. 1296-1301] and on the Durbin-Levinson algorithm to obtain a surrogate series from linear Gaussian processes with long range dependence. We compare this bootstrap method with other existing procedures in a wide Monte Carlo experiment by estimating, parametrically and semi-parametrically, the memory parameter d. We consider Gaussian and non-Gaussian processes to prove the robustness of the method to deviations from normality. The approach is also useful to estimate confidence intervals for the memory parameter d by improving the coverage level of the interval.
Resumo:
This paper presents a formulation of image-based visual servoing (IBVS) for a spherical camera where coordinates are parameterized in terms of colatitude and longitude: IBVSSph. The image Jacobian is derived and simulation results are presented for canonical rotational, translational as well as general motion. Problems with large rotations that affect the planar perspective form of IBVS are not present on the sphere, whereas the desirable robustness properties of IBVS are shown to be retained. We also describe a structure from motion (SfM) system based on camera-centric spherical coordinates and show how a recursive estimator can be used to recover structure. The spherical formulations for IBVS and SfM are particularly suitable for platforms, such as aerial and underwater robots, that move in SE(3).