652 resultados para Crutch transducer
Resumo:
The application of functionally graded material (FGM) concept to piezoelectric transducers allows the design of composite transducers without interfaces, due to the continuous change of property values. Thus, large improvements can be achieved, as reduction of stress concentration, increasing of bonding strength, and bandwidth. This work proposes to design and to model FGM piezoelectric transducers and to compare their performance with non-FGM ones. Analytical and finite element (FE) modeling of FGM piezoelectric transducers radiating a plane pressure wave in fluid medium are developed and their results are compared. The ANSYS software is used for the FE modeling. The analytical model is based on FGM-equivalent acoustic transmission-line model, which is implemented using MATLAB software. Two cases are considered: (i) the transducer emits a pressure wave in water and it is composed of a graded piezoceramic disk, and backing and matching layers made of homogeneous materials; (ii) the transducer has no backing and matching layer; in this case, no external load is simulated. Time and frequency pressure responses are obtained through a transient analysis. The material properties are graded along thickness direction. Linear and exponential gradation functions are implemented to illustrate the influence of gradation on the transducer pressure response, electrical impedance, and resonance frequencies. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
This work presents the implementation of the ultrasonic shear reflectance method for viscosity measurement of Newtonian liquids using wave mode conversion from longitudinal to shear waves and vice versa. The method is based on the measurement of the complex reflection coefficient (magnitude and phase) at a solid-liquid interface. The implemented measurement cell is composed of an ultrasonic transducer, a water buffer, an aluminum prism, a PMMA buffer rod, and a sample chamber. Viscosity measurements were made in the range from 1 to 3.5 MHz for olive oil and for automotive oils (SAE 40, 90, and 250) at 15 and 22.5 degrees C, respectively. Moreover, olive oil and corn oil measurements were conducted in the range from 15 to 30 degrees C at 3.5 and 2.25 MHz, respectively. The ultrasonic measurements, in the case of the less viscous liquids, agree with the results provided by a rotational viscometer, showing Newtonian behavior. In the case of the more viscous liquids, a significant difference was obtained, showing a clear non-Newtonian behavior that cannot be described by the Kelvin-Voigt model.
Resumo:
Highly redundant or statically undetermined structures, such as a cable-stayed bridge, have been of particular concern to the engineering community nowadays because of the complex parameters that must be taken into account for healthy monitoring. The purpose of this study was to verify the reliability and practicability of using GPS to characterize dynamic oscillations of small span bridges. The test was carried out on a cable-stayed wood footbridge at Escola de Engenharia de Sao Carlos-Universidade de Sao Paulo, Brazil. Initially a static load trial was carried out to get an idea of the deck amplitude and oscillation frequency. After that, a calibration trial was carried out by applying a well known oscillation on the rover antenna to check the environment detectable limits for the method used. Finally, a dynamic load trial was carried out by using GPS and a displacement transducer to measure the deck oscillation. The displacement transducer was used just to confirm the results obtained by the GPS. The results have shown that the frequencies and amplitude displacements obtained by the GPS are in good agreement with the displacement transducer responses. GPS can be used as a reliable tool to characterize the dynamic behavior of large structures such as cable-stayed footbridges undergoing dynamic loads.
Resumo:
This article presents improvement on a physical cardiovascular simulator (PCS) system. Intraventricular pressure versus intraventricular volume (PxV) loop was obtained to evaluate performance of a pulsatile chamber mimicking the human left ventricle. PxV loop shows heart contractility and is normally used to evaluate heart performance. In many heart diseases, the stroke volume decreases because of low heart contractility. This pathological situation must be simulated by the PCS in order to evaluate the assistance provided by a ventricular assist device (VAD). The PCS system is automatically controlled by a computer and is an auxiliary tool for VAD control strategies development. This PCS system is according to a Windkessel model where lumped parameters are used for cardiovascular system analysis. Peripheral resistance, arteries compliance, and fluid inertance are simulated. The simulator has an actuator with a roller screw and brushless direct current motor, and the stroke volume is regulated by the actuator displacement. Internal pressure and volume measurements are monitored to obtain the PxV loop. Left chamber internal pressure is directly obtained by pressure transducer; however, internal volume has been obtained indirectly by using a linear variable differential transformer, which senses the diaphragm displacement. Correlations between the internal volume and diaphragm position are made. LabVIEW integrates these signals and shows the pressure versus internal volume loop. The results that have been obtained from the PCS system show PxV loops at different ventricle elastances, making possible the simulation of pathological situations. A preliminary test with a pulsatile VAD attached to PCS system was made.
Resumo:
We modified the noninvasive, in vivo technique for strain application in the tibiae of rats (Turner et al,, Bone 12:73-79, 1991), The original model applies four-point bending to right tibiae via an open-loop, stepper-motor-driven spring linkage, Depending on the magnitude of applied load, the model produces new bone formation at periosteal (Ps) or endocortical surfaces (Ec.S). Due to the spring linkage, however, the range of frequencies at which loads can be applied is limited. The modified system replaces this design with an electromagnetic vibrator. A load transducer in series with the loading points allows calibration, the loaders' position to be adjusted, and cyclic loading completed under load central as a closed servo-loop. Two experiments were conducted to validate the modified system: (1) a strain gauge was applied to the lateral surface of the right tibia of 5 adult female rats and strains measured at applied loads from 10 to 60 N; and (2) the bone formation response was determined in 28 adult female Sprague-Dawley rats. Loading was applied as a haversine wave with a frequency of 2 Hz for 18 sec, every second day for 10 days. Peak bending loads mere applied at 33, 40, 52, and 64 N, and a sham-loading group tr as included at 64 N, Strains in the tibiae were linear between 10 and 60 N, and the average peak strain at the Ps.S at 60 N was 2664 +/- 250 microstrain, consistent with the results of Turner's group. Lamellar bone formation was stimulated at the Ec.S by applied bending, but not by sham loading. Bending strains above a loading threshold of 40 N increased Ec Lamellar hone formation rate, bone forming surface, and mineral apposition rate with a dose response similar to that reported by Turner et al, (J Bone Miner Res 9:87-97, 1994). We conclude that the modified loading system offers precision for applied loads of between 0 and 70 N, versatility in the selection of loading rates up to 20 Hz, and a reproducible bone formation response in the rat tibia, Adjustment of the loader also enables study of mechanical usage in murine tibia, an advantage with respect to the increasing variety of transgenic strains available in bone and mineral research. (Bone 23:307-310; 1998) (C) 1998 by Elsevier Science Inc. All rights reserved.
Resumo:
ArtinM is a D-mannose binding lectin that has been arousing increasing interest because of its biomedical properties, especially those involving the stimulation of Th1 immune response, which confers protection against intracellular pathogens The potential pharmaceutical applications of ArtinM have motivated the production of its recombinant form (rArtinM) so that it is important to compare the sugar-binding properties of jArtinM and rArtinM in order to take better advantage of the potential applications of the recombinant lectin. In this work, a biosensor framework based on a Quartz Crystal Microbalance was established with the purpose of making a comparative study of the activity of native and recombinant ArtinM protein The QCM transducer was strategically functionalized to use a simple model of protein binding kinetics. This approach allowed for the determination of the binding/dissociation kinetics rate and affinity equilibrium constant of both forms of ArtinM with horseradish peroxidase glycoprotein (HRP), a N-glycosylated protein that contains the trimannoside Man alpha 1-3[Man alpha 1-6]Man, which is a known ligand for jArtinM (Jeyaprakash et al, 2004). Monitoring of the real-time binding of rArtinM shows that it was able to bind HRP, leading to an analytical curve similar to that of jArtinM, with statistically equivalent kinetic rates and affinity equilibrium constants for both forms of ArtinM The lower reactivity of rArtinM with HRP than jArtinM was considered to be due to a difference in the number of Carbohydrate Recognition Domains (CRDs) per molecule of each lectin form rather than to a difference in the energy of binding per CRD of each lectin form. (C) 2010 Elsevier B V. All rights reserved
Resumo:
We generalize a proposal for detecting single-phonon transitions in a single nanoelectromechanical system (NEMS) to include the intrinsic anharmonicity of each mechanical oscillator. In this scheme two NEMS oscillators are coupled via a term quadratic in the amplitude of oscillation for each oscillator. One NEMS oscillator is driven and strongly damped and becomes a transducer for phonon number in the other measured oscillator. We derive the conditions for this measurement scheme to be quantum limited and find a condition on the size of the anharmonicity. We also derive the relation between the phase diffusion back-action noise due to number measurement and the localization time for the measured system to enter a phonon-number eigenstate. We relate both these time scales to the strength of the measured signal, which is an induced current proportional to the position of the read-out oscillator.
Resumo:
Introduction. We describe a series of 10 children with intracranial hypertension complicating fulminant hepatic failure submitted to intracranial pressure (ICP) monitoring for intensive care an transplantation management. Patients and methods. Information from pediatrics patients acute liver failure admitted to our hospital was collected in a standard protocol form. We analyzed data from 10 patients, medium age 5.2 years old. In this period we studied aspects as ICP transducer used, number of days with ICP monitoring and complications of ICP monitoring. Results. Hepatitis A was diagnosed in five patients and hepatitis B in two cases. The initial ICP were 2 to 24 mmHg in transducer Seven patients died, four due to intracranial hypertension, included the patient operated for subdural hematoma, and three with transplantation failure. Only, a case of hematoma was verified. Conclusions. The application of ICP monitoring allows intensive care for aggressive ICP management. It can be used in children without adaptations. [REV NEUROL 2009: 48: 134-6]
Resumo:
Objectives. The aim of this study was to assess the relationship between variables of physical assessment - muscular strength, flexibility and dynamic balance - with pain, pain threshold, and fibromyalgia symptoms (FM). Methods. Our sample consists of 55 women, with age ranging from 30 to 55 years (mean of 46.5, (standard deviation, SD=6.6)), mean body mass index (BMI) of 28.7(3.8) and diagnosed for FM according to the American College of Rheumatology criteria. Pain intensity was measured using a visual analogue scale (VAS) and pain threshold (PT) using Fisher`s dolorimeter. FM symptoms were assessed by the Fibromyalgia Impact Questionnaire (FIQ); flexibility by the third finger to floor test (3FF); the muscular strength index (MSI) by the maximum volunteer isometric contraction at flexion and extension of right knee and elbow using a force transducer, dynamic balance by the time to get up and go (TUG) test and the functional reach test (FRT). Data were analysed using Pearson`s correlation, as well as simple and multivariate regression tests, with significance level of 5%. Results. PT and FIQ were weakly but significantly correlated with the TUG, MSI and 3FF as well as VAS with the TUG and MSI (p<0.05). VAS, PT and FIQ was not correlated with FRT. Simple regression suggests that, alone, TUG, FR, MSI and 3FF are low predictors of VAS, PT and FIQ. For the VAS, the best predictive model includes TUG and MSI, explaining 12.6% of pain. variability. For TP and total symptoms, as obtained by the FIQ, most predictive model includes 3FF and MSI, which respectively respond by 30% and 21% of the variability. Conclusion. Muscular strength, flexibility and balance are associated with pain, pain threshold, and symptoms in FM patients.
Resumo:
Background: GH insensitivity (GHI) syndrome caused by STAT5B mutations was recently reported, and it is characterized by extreme short stature and immune dysfunction. Treatment with recombinant human IGF1 (rhIGF1) is approved for patients with GHI, but the growth response to this therapy in patients with STAT5B mutations has not been reported. Objectives: To report the clinical features, molecular findings, and the short-term growth response to rhIGF1 therapy in patients with STAT5B mutation. Subjects and methods: Hormonal and immunological evaluations were performed in two male siblings with GHI associated with atopic eczema, interstitial lung disease, and thrombocytopenic purpura. STAT5B genes were directly sequenced. The younger sibling was treated with rhIGF1 at a dose of 110 mu g/kg BID. Results: Both siblings had laboratory findings compatible with GHI associated with hyperprolactinemia. Lymphopenia and reduced number of natural killer cells without immunoglobulin abnormalities were observed. STAT5B sequence revealed a homozygous frameshift mutation (p.L142fsX161) in both siblings. The younger sibling (9.9 years of age) was treated with rhIGF1 at appropriate dosage, and he did not present any significant change in his growth velocity (from 2.3 to 3.0 cm/year after 1.5 years of therapy). The presence of a chronic illness could possibly be responsible for the poor result of rhIGF1 treatment. Further studies in patients with STAT5B defects are necessary to define the response to rhIGF1 treatment in this disorder. Conclusion: GHI associated with immune dysfunction, especially interstitial lung disease, and hyperprolactinemia is strongly suggestive of a mutation in STAT5B in both sexes.
Resumo:
Objective. The purpose of this series was to determine the frequency of abductor mechanism avulsion by sonography after total hip arthroplasty with the Hardinge approach (J Bone Joint Surg Br 1982; 64:17-19) and its relationship to the presence of insufficiency of this musculature in the postoperative period. Methods. Thirty-four consecutive patients were prospectively accessed in the postoperative period of hip arthroplasty by the Trendelenburg test, hip sonography, and abductor muscle electromyography. In patients who were found to have clinical insufficiency of the abductor musculature, we also measured the femoral offset in the preoperative and postoperative radiographs. Hip sonography was performed by an experienced musculoskeletal radiologist blinded to the other tests, and the tendons of the gluteus medius and gluteus minimus were visualized on longitudinal and transverse sections with a 7- to 10-MHz linear transducer. Results. Eight patients presented clinical insufficiency of the abductor musculature as detected by the Trendelenburg test. Four of these 8 patients with abductor insufficiency presented tendinous avulsion detected by sonography. One of the 4 patients with abductor insufficiency and normal sonographic findings had a decrease in the femoral offset caused by the arthroplasty itself. Two patients presented electromyographic changes of the abductor musculature, with no tendinous avulsion detected by sonography and no abductor insufficiency. Conclusions. We concluded that in patients undergoing total hip arthroplasty by the Hardinge approach in whom insufficiency of the abductor musculature develops, sonography is an interesting method of investigation because it identified the cause of this problem in most of our patients.
Resumo:
Background: There is only limited knowledge on how the quantification of valvular regurgitation by color Doppler is affected by changing blood viscosity. This study was designed to evaluate the effect of changing blood viscosity on the vena contracta width using an in vitro model of valvular insufficiency capable of providing ample variation in the rate and stroke volume. Methods: We constructed a pulsatile flow model filled with human blood at varying hematocrit (15%, 35%, and 55%) and corresponding blood viscosity (blood/water viscosity: 2.6, 4.8, 9.1) levels in which jets were driven through a known orifice (7 mm(2)) into a 110 mL compliant receiving chamber (compliance: 2.2 mL/mmHg) by a pulsatile pump. In addition, we used variable pump stroke volumes (5, 7.5, and 10 mL) and rates (40, 60, and 80 ppm). Vena contracta region was imaged using a 3.5 MHz transducer. Pressure and volume in the flow model were kept constant during each experimental condition, as well as ultrasound settings. Results: Blood viscosity variation in the experimental range did not induce significant changes in vena contracta dimensions. Also, vena contracta width did not change from normal to low hematocrit and viscosity levels. A very modest increase only in vena contracta dimension was observed at very high level of blood viscosity when hematocrit was set to 55% . Pump rate, in the evaluated range, did not influence vena contracta width. These results in controlled experimental settings suggest that the vena contracta is an accurate quantitative method for quantifying valvular regurgitation even when this condition is associated with anemia, a frequent finding in patients with valvular heart disease.
Resumo:
In the present study, we used the electronic version of the von Frey test to investigate the role of cytokines (TNF-alpha and IL-1 beta) and chemokines (KC/CXCL-1) in the genesis of mechanical hypernociception during antigen-induced inflammation in mice. The nociceptive test consisted of evoking a hindpaw flexion reflex with a hand-held force transducer (electronic anesthesiometer) adapted with a 0.5 mm(2) polypropylene tip. The intraplantar administration of methylated bovine serum albumin (mBSA) in previously immunized (IM), but not in sham-immunized (SI) mice, induced mechanical hypernociception in a dose-dependant manner. Hypernociception induced by antigen was reduced in animals pretreated with IL-lra and reparixin (a non-competitive allosteric inhibitor of CXCR2), and in TNF receptor type 1 deficient (TNFR1-/-) mice. Consistently, antigen challenge induced a time-dependent release of TNF-alpha, IL-1 beta and KC/CXCL-1 in IM, but not in SI, mice. Consistently, antigen challenge induced a time-dependent release of TNF-alpha, IL-1 beta and KC/CXCL-1 in IM, but not in SI, mice. The increase in TNF-alpha levels preceded the increase in IL-1 beta and KC/CXCL1. Antigen-induced release of IL-1 beta and KC/CXCL1 was reduced in TNFR1-/- mice, and TNF-alpha induced hypernociception was inhibited by IL-lra and reparixin. Hypernociception induced by IL-1 beta in immunized mice was inhibited by indomethacin, whereas KC/CXCL1-induced hypernociception was inhibited by indomethacin and guanethidine, Antigen-induced hypernociception was reduced by indomethacin and guanethidine and abolished by the two drugs combined. Together, these results suggest that inflammation associated with an adaptive immune response induces hypernociception that is mediated by an initial release of TNF-alpha, which triggers that subsequent release of IL-1 beta and KC/CXCL1. The latter cytokines in turn stimulate the release of the direct-acting final mediator, prostanoids and sympathetic amines. (C) 2008 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All rights reserved.
Resumo:
Leptin resistance and desensitization of hypophagia during prolonged inflammatory challenge. Am J Physiol Endocrinol Metab 300: E858-E869, 2011. First published February 22, 2011; doi: 10.1152/ajpendo.00558.2010.-Acute exposure to bacterial lipopolysaccharide (LPS) is a potent inducer of immune response as well as hypophagia. Nevertheless, desensitization of responses to LPS occurs during long-term exposure to endotoxin. We induced endotoxin tolerance, injecting repeated (6LPS) LPS doses compared with single (1LPS) treatment. 1LPS, but not 6LPS group, showed decreased food intake and body weight, which was associated with an increased plasma leptin and higher mRNA expression of OB-Rb, MC4R, and SOCS3 in the hypothalamus. Hypophagia induced by 1LPS was associated with lower levels of 2-arachidonoylglycerol (2-AG), increased number of p-STAT3 neurons, and decreased AMP-activated protein kinase (AMPK) activity. Desensitization of hypophagia in the 6LPS group was related to high 2-AG, with no changes in p-STAT3 or increased p-AMPK. Leptin decreased food intake, body weight, 2-AG levels, and AMPK activity and enhanced p-STAT3 in control rats. However, leptin had no effects on 2-AG, p-STAT3, or p-AMPK in the 1LPS and 6LPS groups. Rats treated with HFD to induce leptin resistance showed neither hypophagia nor changes in p-STAT3 after 1LPS, suggesting that leptin and LPS recruit a common signaling pathway in the hypothalamus to modulate food intake reduction. Desensitization of hypophagia in response to repeated exposure to endotoxin is related to an inability of leptin to inhibit AMPK phosphorylation and 2-AG production and activate STAT3. SOCS3 is unlikely to underlie this resistance to leptin signaling in the endotoxin tolerance. The present model of prolonged inflammatory challenge may contribute to further investigations on mechanisms of leptin resistance.
Resumo:
Objectives To evaluate the presence of false flow three-dimensional (3D) power Doppler signals in `flow-free` models. Methods 3D power Doppler datasets were acquired from three different flow-free phantoms (muscle, air and water) with two different transducers and Virtual Organ Computer-aided AnaLysis was used to generate a sphere that was serially applied through the 3D dataset. The vascularization flow index was used to compare artifactual signals at different depths (from 0 to 6 cm) within the different phantoms and at different gain and pulse repetition frequency (PR F) settings. Results Artifactual Doppler signals were seen in all phantoms despite these being flow-free. The pattern was very similar and the degree of artifact appeared to be dependent on the gain and distance from the transducer. False signals were more evident in the far field and increased as the gain was increased, with false signals first appearing with a gain of 1 dB in the air and muscle phantoms. False signals were seen at a lower gain with the water phantom (-15 dB) and these were associated with vertical lines of Doppler artifact that were related to PRF, and disappeared when reflections were attenuated. Conclusions Artifactual Doppler signals are seen in flow-free phantoms and are related to the gain settings and the distance from the transducer. In the in-vivo situation, the lowest gain settings that allow the detection of blood flow and adequate definition of vessel architecture should be used, which invariably means using a setting near or below the middle of the range available. Additionally, observers should be aware of vertical lines when evaluating cystic or liquid-containing structures. Copyright (C) 2010 ISUOC. Published by John Wiley & Sons, Ltd.