Anharmonic effects on a phonon-number measurement of a quantum-mesoscopic-mechanical oscillator
Contribuinte(s) |
B. Crasemann |
---|---|
Data(s) |
12/11/2004
|
Resumo |
We generalize a proposal for detecting single-phonon transitions in a single nanoelectromechanical system (NEMS) to include the intrinsic anharmonicity of each mechanical oscillator. In this scheme two NEMS oscillators are coupled via a term quadratic in the amplitude of oscillation for each oscillator. One NEMS oscillator is driven and strongly damped and becomes a transducer for phonon number in the other measured oscillator. We derive the conditions for this measurement scheme to be quantum limited and find a condition on the size of the anharmonicity. We also derive the relation between the phase diffusion back-action noise due to number measurement and the localization time for the measured system to enter a phonon-number eigenstate. We relate both these time scales to the strength of the measured signal, which is an induced current proportional to the position of the read-out oscillator. |
Identificador | |
Idioma(s) |
eng |
Publicador |
American Physical Society |
Palavras-Chave | #Optics #Physics, Atomic, Molecular & Chemical #Resonator #C1 #240402 Quantum Optics and Lasers #240000 Physical Sciences |
Tipo |
Journal Article |