993 resultados para Chemical sensor.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A biomimetic sensor is proposed as a promising new analytical method for determination of norfloxacin (NF) in pharmaceuticals. The sensor was prepared by modifying a glassy carbon electrode surface with a Nafion® membrane doped with poly(copper phthalocyanine) complex [poly-CuPc]. Amperometric measurements carried out with the sensor under an applied potential of -0.05 V vs Ag|AgCl in 0.1 mol L-1 acetic acid containing 1.5 × 10-3 mol L-1 hydrogen peroxide showed a linear response range from 2.0 × 10-4 to 1.2 × 10-3 mol L-1. Selectivity and interference studies were also performed. A sensor response mechanism is proposed, based on the experimental evidence. Recovery studies were carried out using environmental samples, in order to evaluate the sensor’s potential for use with these sample classes. Finally, sensor performance was evaluated using analyses of commercial formulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new selective sensor based on molecularly imprinted polymers (MIPs) was developed for the determination of hexazinone (HXZ) in environmental samples. MIPs were synthesized using a non-covalent approach, and selection of the monomers employed in the polymerization reaction was carried out by molecular modeling. Three functional monomers with high (2-vinylpyridine (MP17)) and intermediate (methacrylic acid (MP12) and acrylamide (MP5)) energies of binding to the template (HXZ) were selected for preparation of the MIPs, in order to conduct comparative studies and validate the theoretical data. For sensor construction, carbon pastes were modified with each MIP or NIP (non-imprinted polymer), and HXZ determination was performed using differential pulse adsorptive cathodic stripping voltammetry (DPAdCSV). All parameters affecting the sensor response were optimized. In HCl at pH 2.5, the sensor prepared with MP17 (5% w/w in the paste) showed a dynamic linear range between 1.9 × 10−11 and 1.1 × 10−10 mol L−1, and a detection limit of 2.6 × 10−12 mol L−1, under the following conditions: accumulation time of 200 s at a potential of −0.5V, scan rate of 50 mVs−1, pulse amplitude of 60 mV, and pulse width of 50 ms. The sensor was selective in the presence of other similar compounds, and was successfully applied to the analysis of HXZ in river water samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrical measures of the soil have been used as variables that correlate with its characteristics. This study aimed at developing an electrical capacitance sensor of low cost, to evaluate its performance on the field and verify the correlation between the measurements of electrical capacitance with physical properties (sand, silt and clay) and chemical properties of soil (pH, MO, P resin, H + Al, K, Ca, Mg, SB, CTC and V%) and the moisture content. The data sampling was performed at the farm named "Capão da Onça" which belongs to the State University of Ponta Grossa. The samples collection was conducted in an area of approximately 13 hectares, totalizing 81 samples. In each sampling the electrical capacitance of the soil was measured. After the sensor withdrawal, soil samples were collected and sent to be analysed in the laboratory of the College of Agronomics Science of the Paulista State University. The measuring instrument used to collect data on electric capacitance of the soil a digital multimeter was used. The data were submitted to the analysis of correlation and regression. The developed system presented a low cost and it was capable to measuring variation of the electrical capacitance of the soil. The obtained measures satisfactorily correlated with the levels of clay and sand, and weakly with the moisture content. This had demonstrated the possibility to use a sensor to verify the soil texture in not homogeneous areas. The measures of the electrical capacitance of the soil obtained by the sensor had significantly correlated with the soil attributes: calcium, magnesium, pH, SB and CTC. These results had demonstrated the possibility to use a sensor for soil fertility control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of an electroanalytical method for simultaneous determination of copper and lead ions in sugar cane spirit (cachaca) using carbon paste electrode modified with ascorbic acid and carbon nanotubes (CPE-AaCNT) is described. Squarewave voltammetry (SWV) with anodic stripping was employed, and this technique was optimized with respect to the following parameters: frequency (50 Hz), amplitude (100 mV) and scan increment (9 mV). The analytical curves were linear in the range from 0.0900 to 7.00 mg L-1 for lead and copper. The limits of detection were 48.5 and 23.9 mu g L-1 for lead and copper, respectively. The developed method was applied to the simultaneous determination of copper and lead in five commercial samples of sugar cane spirit. The results were in good agreement with those obtained by F AAS/GF AAS (flame atomic absorption spectrometry/graphite furnace atomic absorption spectrometry) and showed that CPE-AaCNT can be successfully employed in the simultaneous determination of these metals in real sugar cane spirit samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nitrosyl ruthenium complex, trans-[RuCl([15]aneN(4))NO](PF6)(2), ([15]aneN(4) = 1,4,8,12-tetraazacyclopentadecane), exhibits vasorelaxation characteristics attributed to its nitric oxide release properties. The observed in vitro and in vivo vasodilation is dependent on noradrenaline concentration. We report here the chemical mechanism of the reaction between noradrenaline and trans-[RuCl([15]aneN(4))NO](PF6)(2) in aqueous phosphate buffer solution at pH 7.40. NO measurement by NO-sensor electrode, cyclic voltammetry, (PNMR)-P-31 and HPLC analysis were used to investigate the reduction process as the fundamental step for NO release characteristic of trans-[RuCl([15]aneN(4))NO](PF6)(2). A supramolecular species containing HPO4 (2-) as a bridging group between noradrenaline and trans-[RuCl([15]aneN(4))NO](PF6)(2) is suggested as an intermediate prior to the reduction of the nitrosyl ruthenium complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies on polythiophene gas sensors, based mainly on electrochemical and gravimetric principles can be found in the literature. However, other principles of gas detection, such as optical and thermal, are still little studied. Optical sensing is suitable for remote detection and offers great versatility at low cost. Here,we report on the use of thin films of seven polythiophene derivatives as active layer in optical sensors for the detection of six volatile organic compounds (n-hexane, toluene, tetrahydrofuran, chloroform, dichloromethane and methanol) and water vapor, in concentration range of 500-30,000 ppm. The results showed that it is possible to use different polythiophene derivatives to differentiate VOCs by optical sensing. Differentiation can be performed based on the presence or not of response to an analyte and the sensitivity value of the sensors for the analytes. Another important feature is the lack of the effect of humidity on the response of most films, which could be a major drawback in the application of these sensors. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear magnetic resonance (NMR) is one of the most versatile analytical techniques for chemical, biochemical and medical applications. Despite this great success, NMR is seldom used as a tool in industrial applications. The first application of NMR in flowing samples was published in 1951. However, only in the last ten years Flow NMR has gained momentum and new and potential applications have been proposed. In this review we present the historical evolution of flow or online NMR spectroscopy and imaging, and current developments for use in the automation of industrial processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of an electroanalytical method for simultaneous determination of copper and lead ions in sugar cane spirit (cachaça) using carbon paste electrode modified with ascorbic acid and carbon nanotubes (CPE-AaCNT) is described. Squarewave voltammetry (SWV) with anodic stripping was employed, and this technique was optimized with respect to the following parameters: frequency (50 Hz), amplitude (100 mV) and scan increment (9 mV). The analytical curves were linear in the range from 0.0900 to 7.00 mg L- 1 for lead and copper. The limits of detection were 48.5 and 23.9 µg L- 1 for lead and copper, respectively. The developed method was applied to the simultaneous determination of copper and lead in five commercial samples of sugar cane spirit. The results were in good agreement with those obtained by F AAS/GF AAS (flame atomic absorption spectrometry/graphite furnace atomic absorption spectrometry) and showed that CPE-AaCNT can be successfully employed in the simultaneous determination of these metals in real sugar cane spirit samples.