983 resultados para C-13 NMR-SPECTROSCOPY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

关于双甘肽的~(13)C化学位移行为及其与稀土离子的配位作用前人有过报导。但有关水溶液中双甘肽稀土配合物的结构仍不清楚。本文测定了在重稀土离子Dy~(3+)、Ho~(3+)、Er~(3+)、Tm~(3+)和Yb~(3+)作用下双甘肽~(13)C和~1H的顺磁诱导位移,研究了水溶液中双甘肽稀土配合物的组成及结构。1 实验部分

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dyes Nile Blue (C I Basic Blue 12) and Thionine (C I 52000) were examined in both ionic and neutral forms in different solvents using NMR and UV-visible spectroscopy to firmly establish the structures of the molecules and to assess the nature and extent of their aggregation H-1 and C-13 NMR assignments and chemical shift data were used together with nuclear Overhauser effect information to propose a self-assembly structure These data were supplemented with variable temperature dilution and diffusion-based experimental results using H-1 NMR spectroscopy thereby enabling extended aggregate structures to be assessed in terms of the relative strength of self-association and the extent to which extended aggregates could form (C) 2010 Elsevier Ltd All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first application of high field NMR spectroscopy (800 MHz for 1H observation) to human hepatic bile (as opposed to gall bladder bile) is reported. The bile sample used for detailed investigation was from a donor liver with mild fat infiltration, collected during organ retrieval prior to transplantation. In addition, to focus on the detection of bile acids in particular, a bile extract was analysed by 800 MHz 1H NMR spectroscopy, HPLC-NMR/MS and UPLC-MS. In the whole bile sample, 40 compounds have been assigned with the aid of two-dimensional 1H–1H TOCSY and 1H–13C HSQC spectra. These include phosphatidylcholine, 14 amino acids, 10 organic acids, 4 carbohydrates and polyols (glucose, glucuronate, glycerol and myo-inositol), choline, phosphocholine, betaine, trimethylamine-N-oxide and other small molecules. An initial NMR-based assessment of the concentration range of some key metabolites has been made. Some observed chemical shifts differ from expected database values, probably due to a difference in bulk diamagnetic susceptibility. The NMR spectra of the whole extract gave identification of the major bile acids (cholic, deoxycholic and chenodeoxycholic), but the glycine and taurine conjugates of a given bile acid could not be distinguished. However, this was achieved by HPLC-NMR/MS, which enabled the separation and identification of ten conjugated bile acids with relative abundances varying from approximately 0.1% (taurolithocholic acid) to 34.0% (glycocholic acid), of which, only the five most abundant acids could be detected by NMR, including the isomers glycodeoxycholic acid and glycochenodeoxycholic acid, which are difficult to distinguish by conventional LC-MS analysis. In a separate experiment, the use of UPLC-MS allowed the detection and identification of 13 bile acids. This work has shown the complementary potential of NMR spectroscopy, MS and hyphenated NMR/MS for elucidating the complex metabolic profile of human hepatic bile. This will be useful baseline information in ongoing studies of liver excretory function and organ transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic nuclear polarisation (DNP) has been used to obtain magic angle spinning (14)N(OT) (nitrogen-14 overtone) solid-state NMR spectra from several model amino acids, with both direct and indirect observation of the (14)N(OT) signal. The crystalline solids were impregnated with biradical solutions of organic liquids that do not dissolve the crystalline phase. The bulk phase was then polarized via(1)H spin diffusion from the highly-polarized surface (1)H nuclei, resulting in (1)H DNP signal enhancements of around two orders of magnitude. Cross polarisation from (1)H nuclei directly to the (14)N overtone transition is demonstrated under magic angle spinning, using a standard pulse sequence with a relatively short contact time (on the order of 100 μs). This method can be used to acquire (14)N overtone MAS powder patterns that match closely with simulated line shapes, allowing isotropic chemical shifts and quadrupolar parameters to be measured. DNP enhancement also allows the rapid acquisition of 2D (14)N(OT) heteronuclear correlation spectra from natural abundance powder samples. (1)H-(14)N(OT) HETCOR and (13)C-(14)N(OT) HMQC pulse sequences were used to observe all single-bond H-N and C-N correlations in histidine hydrochloride monohydrate, with the spectra obtained in a matter of hours. Due to the high natural abundance of the (14)N isotope (99.6%) and the advantages of observing the overtone transition, these methods provide an attractive route to the observation of C-N correlations from samples at natural isotopic abundance and enable the high resolution measurement of (14)N chemical shifts and quadrupolar interaction parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the IR absorption spectrum of (CH3OH)-C-13 around the frequency of the 10R(20) CO2 laser line. We found two absorption lines which can be excited by 10R(20) and studied the FIR laser emissions excited by this pump line using a waveguide CO2 laser of 300 MHz tunability: We report two new FIR laser lines of large offset, not previously observed due to their weakness and closeness to other stronger lines. We measured the frequencies of five FIR laser lines for the first time by an accurate heterodyne technique and present the complete assignments of the IR-FIR laser systems relative to this pump line. Furthermore we present new frequency values for two FIR laser lines whose frequencies had been previously wrongly measured. Copyright (C) 1997 Elsevier B.V. Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of an intracavity Stark spectroscopy experiment on the fundamental state of (CD3OH)-C-13. We use an optically pumped hybrid waveguide FIR laser, CH2F2 as active molecule, and (CD3OH)-C-13 as absorbent molecule. No Brewster window is needed to separate the lasing gas from the absorbing deuterated methanol. An absorption line is assigned as E(l) symmetry (n, K, J): (1,4,18) --> (1,5,18) and its frequency is measured as 63.08631 cm(-1) with a precision of a few parts in 10(7); two more absorptions are reported and a tentative assignment for one of them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C-13 exchange solid-state NMR methods were used to study two families of siloxane/poly-(ethylene glycol) hybrid materials: Types I and II, where the polymer chains interact with the inorganic phase through physical (hydrogen bonds or van der Waals forces) or chemical (covalent bonds) interactions, respectively. These methods were employed to analyze the effects of the interactions between the organic and inorganic phases on the polymer dynamics in the milliseconds to seconds time scale, which occurs at temperatures below the motional narrowing of the NMR line width and around the polymer glass transition. Motional heterogeneities associated with these interactions and evidence of both small and large amplitude motions were directly observed for both types of hybrids. The results revealed that the hindrance to the slow molecular motions of the polymer chains due to the siloxane structures depends on the chain length and the nature of the interaction between the organic and inorganic phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use a (CO2)-C-13 laser as optical pumping source to search for new THz laser lines generated from (CH3OH)-C-13. Nineteen new THz laser lines (also identified as far-infrared, FIR) ranging from 42.3 mu m (7.1 THz) to 717.7 mu m (0.42 THz) are reported. They are characterized in wavelength, offset, relative polarization, relative intensity, and optimum working pressure. We have assigned eight laser lines to specific rotational energy levels in the excited state associated with the C-O stretching mode. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present high resolution Doppler limited absorption spectra measurements of the C-O stretching mode of (CH3OH)-C-13, obtained from diode laser spectroscopy, and the Fourier Transform spectrum obtained at 0. 12 cm-1 resolution. By using these data and previously known spectroscopic information, we determined the frequency and the J quantum number for the multiplets of the P and R(J) branches of the C-O stretching fundamental band. Infrared transitions in coincidence with emission lines of the regular CO2 laser and some of its isotope parents are pointed out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used Fourier Transform spectral data on the C-O stretching mode of (CD3OD)-C-13 in order to perform a vibro-rotational analysis for this molecule. We have estimated a few molecular parameters of the ground and C-O stretching vibrational modes. Based on these parameters, and by using the Kwan-Dennison model, we propose assignments for a number of far-infrared laser transitions of (CD3OD)-C-13.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pH-dependent membrane adsorption and distribution of three chlorin derivatives, chlorin e6 (CE), rhodin G7 (RG), and monoaspartyl-chlorin e6 (MACE), in the physiological pH range (pH 6-8) were probed by NMR spectroscopy. Unilamellar vesicles consisting of dioleoyl-phosphatidyl-choline (DOPC) were used as membrane models. The chlorin derivatives were characterized with respect to their aggregation behavior, the pK(a) values of individual carboxylate groups, the extent of membrane adsorption, and their flip-flop rates across the bilayer membrane for pH 6-8. External membrane adsorption was found to be lower for RG than for CE and MACE. Both electrostatic interactions and the extent of aggregation seemed to be the main determinants of membrane adsorption. Rate constants for chlorin transfer across the membrane were found to correlate strongly with the pH of the surrounding medium, in particular, for CE and RG. In acidic solution, CE and RG transfer across the membrane was strongly accelerated, and in basic solution, all compounds were retained, mostly in the outer monolayer. In contrast, MACE flip-flop across the membrane remained very low even at pH 6. The protonation of ionizable groups is suggested to be a major determinant of chlorin transfer rates across the bilayer. pK(a) values of CE and RG were found to be between 6 and 8, and two of the carboxylate groups in MACE had pK(a) values below 6. For CE and RG, the kinetic profiles at acidic pH indicated that the initial fast membrane distribution was followed by secondary steps that are discussed in this article.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report dramatic sensitivity enhancements in multidimensional MAS NMR spectra by the use of nonuniform sampling (NUS) and introduce maximum entropy interpolation (MINT) processing that assures the linearity between the time and frequency domains of the NUS acquired data sets. A systematic analysis of sensitivity and resolution in 2D and 3D NUS spectra reveals that with NUS, at least 1.5- to 2-fold sensitivity enhancement can be attained in each indirect dimension without compromising the spectral resolution. These enhancements are similar to or higher than those attained by the newest-generation commercial cryogenic probes. We explore the benefits of this NUS/MaxEnt approach in proteins and protein assemblies using 1-73-(U-C-13,N-15)/74-108-(U-N-15) Escherichia coil thioredoxin reassembly. We demonstrate that in thioredoxin reassembly, NUS permits acquisition of high-quality 3D-NCACX spectra, which are inaccessible with conventional sampling due to prohibitively long experiment times. Of critical importance, issues that hinder NUS-based SNR enhancement in 3D-NMR of liquids are mitigated in the study of solid samples in which theoretical enhancements on the order of 3-4 fold are accessible by compounding the NUS-based SNR enhancement of each indirect dimension. NUS/MINT is anticipated to be widely applicable and advantageous for multidimensional heteronuclear MAS NMR spectroscopy of proteins, protein assemblies, and other biological systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepared by photoinitiated cross-linking of poly(dl-lactide)−dimethacrylate macromers (5 kg/mol) in the presence of an unreactive diluent. Using diffusion filtering and 2D correlation spectroscopy techniques, all network components are identified. By quantification of network-bound photoinitiator fragments, an average kinetic chain length of 9 ± 2 methacrylate units is determined. The PDLLA macromer solution was also used with a dye to prepare computer-designed structures by stereolithography. For these networks structures, the average kinetic chain length is 24 ± 4 methacrylate units. In all cases the calculated molecular weights of the polymethacrylate chains after degradation are maximally 8.8 kg/mol, which is far below the threshold for renal clearance. Upon incubation in phosphate buffered saline at 37 °C, the networks show a similar mass loss profile in time as linear high-molecular-weight PDLLA (HMW PDLLA). The mechanical properties are preserved longer for the PDLLA networks than for HMW PDLLA. The initial tensile strength of 47 ± 2 MPa does not decrease significantly for the first 15 weeks, while HMW PDLLA lost 85 ± 5% of its strength within 5 weeks. The physical properties, kinetic chain length, and degradation profile of these photo-cross-linked PDLLA networks make them most suited materials for orthopedic applications and use in (bone) tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventionally two-dimensional NMR spectra are recorded in the absolute-intensity mode (1-4). It has recently been demonstrated that absorption-mode 2D spectra have much higher resolution and are the preferred mode of presentation, especially for 2D spectra of biomolecules (5-7). Indeed, any experimental scheme which yields phasemixed lineshapes is subject to modification to yield pure-phase spectra, even at the expense of intensity and anomalous multiplet structure (8-10). For this purpose two types of filters are already known: the z filter (9, 20) and the purging pulse (8, 10). In this note, we propose a 45” pulse pair as a filter for obtaining pure-phase 2D spectra, mainly for experiments in which the above filters do not yield pure-phase spectra.