989 resultados para Bacterial meningitis


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bacterial meningitis is a severe inflammatory disease of the central nervous system and is characterized by massive infiltration of granulocytes into the cerebrospinal fluid (CSF). To assess the role of NADPH oxidase-derived reactive oxygen species (ROS) in pneumococcal meningitis, mice deficient in either the gp91 subunit (essential for functioning of the phagocyte enzyme) or the p47 subunit (essential for functioning of homologous enzymes in nonphagocytic cells) were intracisternally infected with live Streptococcus pneumoniae, and defined disease parameters were measured during the acute stage of infection. While none of the parameters measured (including CSF bacterial titers) were significantly different in gp91(-/-) and wild-type mice, the infection in p47(-/-) mice was associated with significantly increased inflammation of the subarachnoid and ventricular space, disruption of the blood-brain barrier, and the presence of interleukin-1 beta, tumor necrosis factor alpha, and matrix metalloproteinase 9 in the cortex. These changes were associated with approximately 10-fold-higher CSF bacterial titers in p47(-/-) mice than in wild-type mice (P < 0.001). In contrast to infection with live bacteria, the inflammatory response, including CSF leukocytosis, was significantly attenuated in p47(-/-) mice (but not gp91(-/-) mice) challenged with a fixed number of heat-inactivated pneumococci. Impairment of the host defense appeared to be responsible for the higher bacterial titers in p47(-/-) mice. Therefore, these results indicate that ROS generated by a gp91-independent NADPH oxidase(s) are important for establishing an adequate inflammatory response to pneumococcal CSF infection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bacterial meningitis causes neuronal apoptosis in the hippocampal dentate gyrus, which is associated with learning and memory impairments after cured disease. The execution of the apoptotic program involves pathways that converge on activation of caspase-3, which is required for morphological changes associated with apoptosis. Here, the time course and the role of caspase-3 in neuronal apoptosis was assessed in an infant rat model of pneumococcal meningitis. During clinically asymptotic meningitis (0-12 h after infection), only minor apoptotic damage to the dentate gyrus was observed, while the acute phase (18-24 h) was characterized by a massive increase of apoptotic cells, which peaked at 36 h. In the subacute phase of the disease (36-72 h), the number of apoptotic cells decreased to control levels. Enzymatic caspase-3 activity was significantly increased in hippocampal tissue of infected animals compared to controls at 22 h. The activated enzyme was localized to immature cells of the dentate gyrus, and in vivo activity was evidenced by cleavage of the amyloid-beta precursor protein. Intracisternal administration of the caspase-3-specific inhibitor Ac-DEVD-CHO significantly reduced apoptosis in the hippocampal dentate gyrus. In contrast to a study where the decrease of hippocampal apoptosis after administration of a pan-caspase inhibitor was due to downmodulation of the inflammatory response, our data demonstrate that specific inhibition of caspase-3 did not affect inflammation assessed by TNF-alpha and IL-1beta concentrations in the cerebrospinal fluid space. Taken together, the present results identify caspase-3 as a key effector of neuronal apoptosis in pneumococcal meningitis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Meningitis is the most common serious manifestation of infection of the central nervous system. Inflammatory involvement of the subarachnoid space with meningeal irritation leads to the classical triad of headache, fever, and meningism, and to a pleocytosis of the cerebrospinal fluid (CSF). Meningitis is clinically categorized into an acute and chronic disease based on the acuity of symptoms. Acute meningitis develops over hours to days, while in chronic meningitis symptoms evolve over days or even weeks. Aseptic meningitis, in which no bacterial pathogen can be isolated by routine cultures, can mimic bacterial meningitis, but the disease has a much more favorable prognosis. Many cases of aseptic meningitis are caused by viruses, primarily enteroviruses, but bacteria and noninfectious etiologies also cause meningitis with negative cultures. Symptoms of meningeal inflammation with CSF pleocytosis that persist for more than 4 weeks define the chronic meningitis syndrome. The diagnosis is based on the patient history, clinical evidence of meningitis, CSF examination, and often imaging studies. The differential diagnosis is broad, and the predominant CSF cell type can provide clues as to the underlying disease. Empiric therapy is primarily based on the age of the patient, with modifications if there are positive findings on CSF gram stain or if the patient presents with special risk factors. In patients with chronic meningitis, a definite diagnosis is often not available or delayed for days, in which case empiric therapy may have to be initiated. It is important to cover the treatable causes of meningitis, for which the outcome is poor if treatment is delayed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In bacterial meningitis, neutrophils cope with bacterial infection but also lead to tissue damage. The balance of beneficial and harmful effects may depend on the lifespan of the neutrophils in the CNS. Here, we show that CSF of patients with meningococcal meningitis contains a neutrophil apoptosis-inhibiting capacity that correlates with TNF-α content. In vitro experiments show that Neisseria meningitidis as well as LPS derived from these bacteria regulated neutrophil apoptosis mainly by stimulating TNF-α production in monocytes. Whereas LPS-induced PI3K-dependent survival signals in monocytes are critical for neutrophil survival, PI3K signaling in granulocytes did not contribute to the increased lifespan of neutrophils. We conclude that LPS-driven PI3K signaling in monocytes regulates neutrophil apoptosis and thereby, may be crucial in the initiation of secondary brain damage in bacterial meningitis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND High mortality and morbidity rates are observed in patients with bacterial meningitis (BM) and urge for new adjuvant treatments in addition to standard antibiotic therapies. In BM the hippocampal dentate gyrus is injured by apoptosis while in cortical areas ischemic necrosis occurs. Experimental therapies aimed at reducing the inflammatory response and brain damage have successfully been evaluated in animal models of BM. Fluoxetine (FLX) is an anti-depressant of the selective serotonin reuptake inhibitors (SSRI) and was previously shown to be neuroprotective in vitro and in vivo. We therefore assessed the neuroprotective effect of FLX in experimental pneumococcal meningitis. METHODS Infant rats were infected intracisternally with live Streptococcus pneumoniae. Intraperitoneal treatment with FLX (10mgkg(-1)d(-1)) or an equal volume of NaCl was initiated 15min later. 18, 27, and 42h after infection, the animals were clinically (weight, clinical score, mortality) evaluated and subject to a cisternal puncture and inflammatory parameters (i.e., cyto-/chemokines, myeloperoxidase activity, matrix metalloproteinase concentrations) were measured in cerebrospinal fluid (CSF) samples. At 42h after infection, animals were sacrificed and the brains collected for histomorphometrical analysis of brain damage. RESULTS A significant lower number of animals treated with FLX showed relevant hippocampal apoptosis when compared to littermates (9/19 animals vs 18/23, P=0.038). A trend for less damage in cortical areas was observed in FLX-treated animals compared to controls (13/19 vs 13/23, P=ns). Clinical and inflammatory parameters were not affected by FLX treatment. CONCLUSION A significant neuroprotective effect of FLX on the hippocampus was observed in acute pneumococcal meningitis in infant rats.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report a case of invasive Neisseria sicca/subflava meningitis after a spinal injection procedure during which a face mask was not worn by the proceduralist. The report highlights the importance of awareness of, and adherence to, guidelines for protective face mask use during procedures that require sterile conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomedical companies catch and bleed horseshoe crabs for the production of Limulus amebocyte lysate (LAL), a product used for protecting public health (Berkson and Shuster, 1999). LAL is a clotting agent, derived solely from horseshoe crab blood cells, which is used to detect the presence of pathogenic gramnegative bacteria in injectable drugs and implantable medical and dental devices (Mikkelsen, 1988; Novitsky, 1991). In addition, LAL is used in many diagnostic tests for such illnesses as gram-negative bacterial meningitis and typhoid fever (Ding and Ho, 2001). Because the LAL test allows one to detect femtogram levels of endotoxin (Ding and Ho, 2001), it is the most effective test for detecting endotoxin contamination, and its increasing use in medical and pharmaceutical laboratories makes it a highly valued product.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D. degree in Biology/ Molecular Biology

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Las infecciones del sistema nervioso son importantes fuentes de morbilidad y mortalidad en el mundo, debido a diferentes factores como son el amplio uso de antibióticos que aunque contribuyen con éxito al manejo de infecciones, pero el mal uso por automedicación o tratamientos incompletos favorecen la emergencia de organismos resistentes y la existencia de “mimos infecciosos” que incluyen el síndrome de reconstitución inflamatoria (IRIS). Adicionalmente el crecimiento de las poblaciones inmunocomprometidas por el síndrome de inmunodeficiencia adquirida (SIDA) y por tratamientos agresivos para trasplante sólido o hematopoyético han mejorado la sobrevida de diferentes tipos de malignidades y alteraciones reumatológicas pero son poblaciones que tienen más susceptibilidad a contraer infecciones y encefalitis mediadas inmunológicamente, como son la encefalomielitis diseminada aguda (ADEM) o la encefalitis contra el receptor de N-metil-D aspartato (NMDA).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite advances in antibiotic therapy, bacterial meningitis (BM) remains with high mortality and morbidity rates in worldwide. One important mechanism associated to sequels during disease is the intense inflammatory response which promotes an oxidative burst and release of reactive oxygen species, consequently leading to cell death. Activation of DNA repair enzymes during oxidative stress has been demonstrated in several neurological disorders. APE1/Ref-1 is a multifunctional protein involved in DNA repair and plays a redox function on transcription factors such as NFkB and AP-1.The aim of this study was assess the role of APE1/Ref-1 on inflammatory response and the possibility of its modulation to reduce the sequels of the disease. Firstly it was performed an assay to measure cytokine in cerebrospinal fluid of patients with BM due to Streptococcus pneumoniae and Neisseriae meningitides. Further, a cellular model of inflammation was used to observe the effect of the inhibition of the endonuclease and redox activity of APE1/Ref-1 on cytokine levels. Additionally, APE1/Ref-1 expression in cortex and hippocampus of rat with MB after vitamin B6 treatment was evaluated. Altogether, results showed a similar profile of cytokines in the cerebrospinal fluid of patients from both pathogens, although IFNy showed higher expression in patients with BM caused by S. pneumoniae. On the other hand, inhibitors of APE1/Ref-1 reduced cytokine levels, mainly TNF-α. Reduction of oxidative stress markers was also observed after introduction of inhibitors in the LPS-stimulated cell. In the animal model, BM increased the expression of the protein APE1/Ref-1, while vitamin B6 promoted reduction. Thereby, this data rise important factors to be considered in pathogenesis of BM, e.g., IFNy can be used as prognostic factor during corticosteroid therapy, APE1/Ref-1 can be an important target to modulate the level of inflammation and VIII oxidative stress, and vitamin B6 seems modulates several proteins related to cell death. So, this study highlights a new understanding on the role of APE1/Ref-1 on the inflammation and the oxidative stress during inflammation condition

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In vitro and in animal models, APE1, OGG1, and PARP-1 have been proposed as being involved with inflammatory response. In this work, we have investigated if the SNPs APE1 Asn148Glu, OGG1 Ser326Cys, and PARP-1 Val762Ala are associated to meningitis and also developed a system to enable the functional analysis of polymorphic proteins. Patients with bacterial meningitis (BM), aseptic meningitis (AM) and controls (non-infected) genotypes were investigated by PIRA-PCR or PCR-RFLP. DNA damages were detected in genomic DNA by Fpg treatment. IgG and IgA were measured from plasma and the cytokines and chemokines were measured from cerebrospinal fluid samples using Bio-Plex assays. The levels of NF-κB and c-Jun were measured in CSF by dot blot assays. A significant (P<0.05) increase in the frequency of APE1 148Glu allele in BM and AM patients was observed. A significant increase in the genotypes Asn/Asn in control group and Asn/Glu in BM group was also found. For the SNP OGG1 Ser326Cys, the genotype Cys/Cys was more frequent (P<0.05) in BM group. The frequency of PARP-1 Val/Val genotype was higher in control group (P<0.05). The occurrence of combined SNPs increased significantly in BM patients, indicating that these SNPs may be associated to the disease. Increasing in sensitive sites to Fpg was observed in carriers of APE1 148Glu allele or OGG1 326Cys allele, suggesting that SNPs affect DNA repair activity. Alterations in IgG production were observed in the presence of SNPs APE1Asn148Glu, OGG1Ser326Cys or PARP-1Val762Ala. Reductions in the levels ofIL-6, IL-1Ra, MCP-1/CCL2and IL-8/CXCL8 were observed in the presence of APE1148Glu allele in BM patients, however no differences were observed in the levels of NF-κB and c-Jun considering genotypes and analyzed groups. Using APE1 as model, a system to enable the analysis of cellular effects and functional characterization of polymorphic proteins was developed using strategies of cloning APE1 cDNA in pIRES2-EGFP vector, cellular transfection of the construction obtained, siRNA for endogenous APE1 and cellular cultures genotyping. In conclusion, we obtained evidences of an effect of SNPs in DNA repair genes on the regulation of immune response. This is a pioneering work in the field that shows association of BER variant enzymes with an infectious disease in human patients, suggesting that the SNPs analyzed may affect immune response and damage by oxidative stress level during brain infection. Considering these data, new approaches of functional characterization must be developed to better analysis and interactions of polymorphic proteins in response to this context

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial meningitis (BM) is still an important infectious disease causing death and disability. Invasive bacterial infections of the central nervous systems (CNS) generate some of the most powerful inflammatory responses known, which contributes to neuronal damage. The DNA microarray technology showed alterations in the kynurenine (KYN) pathway that is induced in BM and other diseases associated with inflammation, leading to brain injury. Our main aim was to search SNPs previously described in the KYN path enzymes to investigate a putative association of this SNPs with imbalanced in this pathway in patients with BM. The patients included in this study were 33 males and 24 females, with ages varying from 02 months to 68 years. SNPs were located inside of the domain conserved in KYNU, IDO, KATI and KATII. Primers were designed for analysis of SNPs already described by PIRA-PCR followed by RFLP. The analysis of KYNU+715G/A SNP found a heterozygous frequency of 0.033. We did not found the variant allele of SNP KYNU+693G/A, KATI+164T/C, KATII+650C/T and IDO+434T/G. Despite of previews studies showing the importance of KYN pathway we did not found one association of these SNPs analyzed with susceptibility or severity of MB in study population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite advances in vaccine development and therapy, bacterial meningitis (BM) remains a major cause of death and long-term neurological disabilities. As part of the host inflammatory response to the invading pathogen, factors such as reactive oxygen species are generated, which may damage DNA and trigger the overactivation of DNA repair mechanisms. It is conceivable that the individual susceptibility and outcome of BM may be in part determined by non synonymous polymorphisms that may alter the function of crucial BER DNA repair enzymes as PARP-1, OGG-1 and APE-1. These enzymes, in addition to their important DNA repair function, also perform role of inflammatory regulators. In this work was investigated the non synonymous SNPs APE-1 Asn148Glu, OGG-1 Ser326Cys,PARP-1 Val762Ala, PARP-1 Pro882Leu and PARP-1 Cys908Tyr in patients with bacterial meningitis (BM), chronic meningitis (CM), aseptic meningitis (AM) and not infected (controls). As results we found increased frequency of variant alleles of PARP-1 Val762Ala (P = 0.005) and APE-1 Asn148Glu (P=0.018) in BM patients, APE-1 Asn148Glu in AM patients (P = 0.012) and decrease in the frequency of the variant allele OGG-1 Ser326Cys in patients with CM (P = 0.013), regarding the allelic frequencies in the controls. A major incidence of individuals heterozygous and/ or polymorphic homozygous in BM for PARP-1 Val762Ala (P= 0.0399, OD 4.2, 95% IC 1.213 -14.545) and PARP-1 Val762Ala/ APE-1 Asn148Glu (P = 0.0238, OD 11.111, 95% IC 1.274 - 96.914) was observed related to what was expected in a not infected population. It was also observed a major incidence of combined SNPs in the BM patients compared with the control group (P=0.0281), giving evidences that SNPs can cause some susceptibility to the disease. This combined effect of SNPs seems to regulate the principal cytokines and other factors related to BM inflammatory response and point the importance of DNA repair not only to repair activity when DNA is damaged, but to others essential functions to human organism balance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Activation of the kynurenine (KYN) pathway (KP) by modulators of immune system has been observed during several neurological diseases. Here we assessed the association of chemo-/cytokine levels with the concentration of KP metabolites in cerebrospinal fluid (CSF) and plasma samples from patients with bacterial meningitis (BM). All samples were collected from 42 patients diagnosed with acute bacterial meningitis (ABM), aseptic meningitis, tuberculous meningitis and patients without infection neurological disorders. CSF and plasma concentration of metabolites from the KP was assessed by high pressure liquid chromatography (HPLC) and cytokines and chemokines by Bio-plex 200 suspension array system. Concentrations of the KP metabolites KYN and kynurenic acid (KYNA) were significantly higher in CSF of patients with ABM compared to other groups. Tryptophan (TRP), anthranilic acid (AA), 3-hydroxykynurenine (3HK) and 3-hydroxyanthranilic acid (3HAA) did not show statistical significance, although some of them presented a good accumulation during ABM. The expression of TNF-alpha, IL-6, IL-1beta, IFN-gamma, IL-10, IL-1 receptor antagonist (IL-1Ra), MIP-1alpha, MIP-1beta, MCP-1 and G-CSF was about 100-fold higher in CSF from ABM patients than other infected groups. In all CSF and plasma samples, the concentration of IL-2, IL-12(p70), IL-4, IL-8 and GM-CSF was not significant. ABM still showed significant concentrations of IL-6, IL-10, IL-1Ra and MCP-1 in plasma samples. Based on the comparison of KP metabolites concentrations between plasma and CSF samples we conclude that the activation of the tryptophan pathway upon BM occurs within the brain. This increase in KP metabolites is most due to activation of the KP by molecules as IFN-gamma and TNF-alpha in response to infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)