99 resultados para BRYOZOANS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment descriptions and lithostratigraphy (chapter 6.4) NANSEN BASIN The upperrnost 20-50 cm of sedirnents in the Nansen Basin norrnally cornprise soft dark brown, brown-grayish and brown clay. Except for the toprnost clay, the four piston cores retrieved, contained quite different lithologies: a rnuddy diarnicton with outsized clasts (PS2157-6), sandy-silt beds alternating with clay beds (PS2159-6), and silty clay beds of brownish and grayish colours (PS2161-3). Core PS2208-3 was retrieved frorn a plateau on a searnount. The plateau was serni-encircled by hills. The upper 250 cm of this core cornprise brown and olive brown clays. Below these are several sandlayers and a 74 cm thick unit of a sandy mud with rnud-clasts up to 20 cm in diameter. GAKKEL RIDGE The uppermost 20-50 cm of sediments on the Gakkel Ridge comprise soft dark brown, brown, grayish brown clay. In most of the cores there are two horizons of brown clay separated by olive brown clay. The upper horizon is darker. The older stratigraphy is rather varied. Core PS2165-1 contains several thin gray sandlsilt layers, probably distal turbidites. The sarne is found in Core PS2167-1. This core also has a thick (approx. 2 rn) coarse grained turbidite containing large rnud clasts and basaltic rock fragrnents. The color of the turbiditic layers is dark gray. There are several horizons of hernipelagic sandylsilty clays with quite a variety in colours; black, gray, olive, brown, yellowish brown and reddish. The colour variation rnay be due to hydrotherrnal activity or provenance or a shift in redox potential. Cores PS2168-2 and PS2169-1 have typical sequences of very dark gray sandy mud with sharp lower boundaries grading upwards into olive brown clay. Below the lower boundary is often a thin (1-2 cm) gray clay layer. AMUNDSEN BASIN The giant box cores (GKG) provided in most cases excellently preserved sedirnent surfaces which consisted in the entire Amundsen Basin of dark brown to dark grayish brown silty clay with few dropstones and common calcareous microfossils (foraminifers and calcareous nannofossils). The brown and grayish brown color of the sediment surface is a result of the oxidizing conditions at the seafloor due to the rapid renewal of the bottom water rnasses. Planktic forarninifers and calcareous nannofossils are relatively frequent and well preserved despite the rernote location of the basin and its water depths of >4000 rn. Srnear slide descriptions have shown that the surface sedirnents consist dorninantly of clays to silty rnuds with clay rninerals and quartz as the rnost important constituents. The coarse fractions contained besides planktic and benthic forarninifers and coarse clastic rnaterials, rare bivalves, dropstones and mud clasts. The Station PS2190 at the North Pole is a particular good exarnple of the type of sedirnents deposited at the sea floor surface of the Arnundsen Basin, with hornogenous dark brown soft clay covering a sedirnent sequence of highly variable cornposition. Nurnerous giant box cores also provide insight into the detailed lithostratigraphy of the upperrnost sedirnent layers. Twelve box cores have been collected frorn the Arnundsen Basin. Below the youngest unit of 5-20 crn thick silty clays deposits of variable stratigraphies have been found, rnostly consisting of clays or silty clays. In a few instances turbidites have been observed. Benthic forarninifers have not been found in the surface sedirnents. Other fossils were extrernely rare. Bioturbation is weakly developed on all stations. Benthic anirnals seern to live only in and on the upperrnost 2 cm of the uppermost sediment layer. They cornprise amphipods (on all stations) and holothurians, bryozoans, polychaetes, and porifers at one station each. LOMONOSOV RIDGE Sediments from the Lomonosov Ridge show a variety of colors and textures. Following smear slide analyses they are composed mostly of clay minerals and quartz with mica and feldspars, especially in the siltier and sandier parts. Volcanic glass, microcrystalline carbonate, opaque minerals and green amphibole are occasional accessories. The sediments from the Lomonosov Ridge show a noticeable difference from sediments collected from the surrounding basins. Lomonosov Ridge sediments are richer in silt and sand than basin sediments. Occasional turbidites occur in ridge sediments but these must be of entirely local origin. The ridge sediments include frequent layers of "cottage cheese" texture made up of what appear to be small, angular mud clasts of a variety of colors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are serious concerns that ocean acidification will combine with the effects of global warming to cause major shifts in marine ecosystems, but there is a lack of field data on the combined ecological effects of these changes due to the difficulty of creating large-scale, long-term exposures to elevated CO2 and temperature. Here we report the first coastal transplant experiment designed to investigate the effects of naturally acidified seawater on the rates of net calcification and dissolution of the branched calcitic bryozoan Myriapora truncata (Pallas, 1766). Colonies were transplanted to normal (pH 8.1), high (mean pH 7.66, minimum value 7.33) and extremely high CO2 conditions (mean pH 7.43, minimum value 6.83) at gas vents off Ischia Island (Tyrrhenian Sea, Italy). The net calcification rates of live colonies and the dissolution rates of dead colonies were estimated by weighing after 45 days (May-June 2008) and after 128 days (July-October) to examine the hypothesis that high CO2 levels affect bryozoan growth and survival differently during moderate and warm water conditions. In the first observation period, seawater temperatures ranged from 19 to 24 °C; dead M. truncata colonies dissolved at high CO2 levels (pH 7.66), whereas live specimens maintained the same net calcification rate as those growing at normal pH. In extremely high CO2 conditions (mean pH 7.43), the live bryozoans calcified significantly less than those at normal pH. Therefore, established colonies of M. truncata seem well able to withstand the levels of ocean acidification predicted in the next 200 years, possibly because the soft tissues protect the skeleton from an external decrease in pH. However, during the second period of observation a prolonged period of high seawater temperatures (25-28 °C) halted calcification both in controls and at high CO2, and all transplants died when high temperatures were combined with extremely high CO2 levels. Clearly, attempts to predict the future response of organisms to ocean acidification need to consider the effects of concurrent changes such as the Mediterranean trend for increased summer temperatures in surface waters. Although M. truncata was resilient to short-term exposure to high levels of ocean acidification at normal temperatures, our field transplants showed that its ability to calcify at higher temperatures was compromised, adding it to the growing list of species now potentially threatened by global warming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Australian southern continental margin is the world’s largest site of cool-water carbonate deposition, and the Great Australian Bight is its largest sector. The Eyre Peninsula is fringed by coastal beaches with aeolianites and marks the eastern edge of the Great Australian Bight. Five shoreline transects of varying lengths spanned a 150km longitudinal distance and at each the intertidal, beach, dune and secondary dune environments were sampled, for a total of 18 samples. Sediments are a mixture of modern, relict, and Cenozoic carbonates, and quartz grains. Carbonate aeolianites on the western Eyre Peninsula are mostly composed of modern carbonate grains: predominantly molluscs (23-33%) and benthic foraminifera (10-26%), locally abundant coralline algae (3-28%), echinoids (2-22%), and bryozoans (2-14%). Cenozoic grain abundance ranges from 1-6% whereas relict grain abundance ranges from 0-17%. A southward increase in bryozoan particles correlates with a nutrient element abundance and decrease in temperature due to a large seasonal coastal upwelling system that drives 2-3 major upwelling events per year, bringing cold, nutrient rich, Sub-Antarctic Surface Water (<12°C) onto the shelf. In southern, mostly wind protected locations, the beach and dune sediment compositions are similar, indicating that wind energy has successfully carried all sediment components of the beach into the adjacent dunes. In northern, exposed locations, the composition is not the same everywhere, and trends indicate that relative wind energy has the ability to impact grain composition through preferential wind transport. Aeolianite composition is therefore a function of both upwelling and the degree of coastal exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The southeastern coast of South Australia contains a spectacular and world-renown suite of Quaternary calcareous aeolianites. This study is focused on the provenance of components in the Holocene sector of this carbonate breach-dune succession. Research was carried out along seven transects from ~30 meters water depth offshore across the beach and into the dunes. Offshore sediments were acquired via grab sampling and SCUBA. Results indicate that dunes of the southern Lacepede and Otway coasts in particular are mostly composed of modern invertebrate and calcareous algal allochems. The most numerous grains are from molluscs, benthic foraminifera, coralline algae, echinoids, and bryozoans. These particles originate in carbonate factories such as macroalgal forests, rocky reefs, seagrass meadows, and low-relief seafloor rockgrounds. The incorporation of carbonate skeletons into coastal dunes, however, depends on a combination of; 1) the infauna within intertidal and nearshore environments, 2) the physical characteristics of different allochems and their ability to withstand fragmentation and abrasion, 3) the wave and swell climate, and 4) the nature of aeolian transport. Most aeolian dune sediment is derived from nearshore and intertidal carbonate factories. This is particularly well illustrated by the abundance of robust infaunal bivalves that inhabit the nearshore sands and virtual absence of bryozoans that are common as sediment particles in water depths > 10mwd. Thus, the calcareous aeolianites in this cool-water carbonate region are not a reflection of the offshore marine shelf factories, but more a product of shallow nearshore-intertidal biomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fossil associations from the middle and upper Eocene (Bartonian and Priabonian) sedimentary succession of the Pamplona Basin are described. This succession was accumulated in the western part of the South Pyrenean peripheral foreland basin and extends from deep-marine turbiditic (Ezkaba Sandstone Formation) to deltaic (Pamplona Marl, Ardanatz Sandstone and Ilundain Marl formations) and marginal marine deposits (Gendulain Formation). The micropalaeontological content is high. It is dominated by foraminifera, and common ostracods and other microfossils are also present. The fossil ichnoasssemblages include at least 23 ichnogenera and 28 ichnospecies indicative of Nereites, Cruziana, Glossifungites and ?Scoyenia-Mermia ichnofacies. Body macrofossils of 78 taxa corresponding to macroforaminifera, sponges, corals, bryozoans, brachiopods, annelids, molluscs, arthropods, echinoderms and vertebrates have been identified. Both the number of ichnotaxa and of species (e. g. bryozoans, molluscs and condrichthyans) may be considerably higher. Body fossil assemblages are comparable to those from the Eocene of the Nord Pyrenean area (Basque Coast), and also to those from the Eocene of the west-central and eastern part of South Pyrenean area (Aragon and Catalonia). At the European scale, the molluscs assemblages seem endemic from the Pyrenean area, although several Tethyan (Italy and Alps) and Northern elements (Paris basin and Normandy) have been recorded. Palaeontological data of studied sedimentary units fit well with the shallowing process that throughout the middle and late Eocene occurs in the area, according to the sedimentological and stratigraphical data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vertical distribution pattem of mesofaunal elements is described from clay-marl bedding rhythms from the Frielingen section (Hannover, NW Germany), which exposes latest Hau- terivian sediments (early Cretaceous). Some mesofaunal groups show a correlation with the pale- dark bedding rhythms. The pale, marly beds are chracterised by bryozoans. In addition remnants of crinoids, echinoids, asteroids, ophiuroids and holothuroids are more common in pale layers than in dark ones. Converseley, the relative abundance of serpulids, fish remains, bivalves and gastropods shows no relationship to the bedding rhythms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Borings of bryozoan colonies are rare fossils and hitherto unknown from Central America. Four different types of zoaria, belonging to Spathipora sp., Terebripora sp. A, Terebripora cf. falunica and Iramena sp., were recognized. They are developed on shells of Miocene oysters (Saccostrea sp. and Ostrea sp.) from shell - beds of the Venado-Formation (Northern Limon - San Carlos Basin, Costa Rica). The period of colonization and growth by bryozoans and/or a few other benthic invertebrates was probably a short - term event, followed by suffocation from accumlating sediment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the Sedimentation of the platform carbonate deposits of the Korallenoolith Formation (middle Oxfordian to early Kimmeridgian) small buildups ofcorals formed in the Lower Saxony Basin. These bioconstructions are restricted to particular horizons (Untere Korallenbank,ßorigenuna-Bank Member etc.) and represent patch reefs and biostromes. In this study, the development of facies, fossil assemblages, spatial distribution of fossils, and reefs of the ßorigenuna-Bank Member (upper Middle Oxfordian) in the Süntel Mts and the eastern Wesergebirge Mts is described; the formation of reefs is discussed in detail. Twelve facies types are described and interpreted. They vary between high-energy deposits as well winnowed oolites and quiet-water lagoonal mudstones. Owing to the significance of biota, micro- and macrofossils are systematically described. The reefs are preserved in growth position, are characterized by numerous corresponding features and belong to a certain reef type. According to their size, shape and framework, they represent patch reefs, coral knobs (sensu James, 1983), coral thrombolite reefs (sensu Leinfelder et al., 1994) or “Klein- and Mitteldickichte” (sensu Laternser, 2001). Their growth fabric corresponds to the superstratal (dense) pillarstone (sensu Insalaco, 1998). As the top of the ßorigenuna-Bank displays an erosional unconformity (so-called Hauptdiskontinuität), the top of the reefs are erosionally capped. Their maximum height amounts to at least the maximum thickness of the ßorigenuna-Bank which does not exceed 4 metres. The diversity of coral fauna of the reefs is relatively low; a total of 13 species is recorded. The coral community is over- whelmingly dominated by the thin-branched ramose Thamnasteria dendroidea (Lamouroux) that forms aggregations of colonies (77?. dendroidea thickets). Leafy to platy Fungiastrea arachnoides (Parkinson) and Thamnasteria concinna (Goldfuss) occur subordinately, other species are only of minor importance. In a few cases, the reef-core consisting of Th. dendroidea thickets is laterally encrusted by platy F. arachnoides and Th. concinna colonies, and microbial carbonates. This zonation reflects probably a succession of different reef builders as a result of changing environmental conditions (allogenic succession). Moreover, some reefs are overlain by a biostrome made of large Solenopora jurassica nodules passing laterally in a nerinean bed. Mikrobial carbonates promoted reef growth and favoured the preservation of reef organismn in their growth position or in situ. They exhibit a platy, dendroid, or reticulate growth form or occur as downward-facing hemispheroids. According to their microstructure, they consist of a peloidal, clotted, or unstructured fabric (predominately layered and poorly structured thrombolite as well as clotted leiolite) (sensu Schmid, 1996). Abundant endo- and epibiontic organisms (bivalves, gastropods, echinoids, asteroids, ophiuroids, crabs etc) are linked to the reefs. With regard to their guild structure, the reefs represent occurrences at which only a few coral species serve as builder. Moreover, microbial carbonates contribute to both building and binding of the reefs. Additional binder as well as baffler are present, but not abundant. According to the species diversity, the dweller guild comprises by far the highest number of invertebrate taxa. The destroyer guild chiefly encompasses bivalves. The composition of the reef community was influenced by the habitat structure of the Th. dendroidea thickets. Owing to the increase in encrusting organisms and other inhabitants of the thickets, the locational factors changed, since light intensity and hydrodynamic energy level and combined parameters as oxygen supply declined in the crowded habitat. Therefore a characteristic succession of organisms is developed that depends on and responds to changing environmental conditions („community replacement sequence“). The succession allows the differentiation of different stages. It started after the cessation of the polyps with boring organisms and photoautotrophic micro-encrusters (calcareous algae, Lithocodium aggregatum). Following the death of these pioneer organisms, encrusting and adherent organisms (serpulids, „Terebella“ species, bryozoans, foraminifers, thecideidinids, sklerospongid and pharetronid sponges, terebratulids), small mobile organisms (limpets), and microbial induced carbonates developed. The final stage in the community replacement sequence gave rise to small cryptic habitats and organisms that belong to these caves (cryptobionts, coelobites). The habitat conditions especially favoured small non-rigid demosponges (“soft sponges”) that tolerate reduced water circulation. Reef rubble is negligible, so that the reefs are bordered by fossiliferous micritic limestone passing laterally in micritic limestone. Approximately 10% of the study area (outcropping florigemma-Bank) corresponds to reefal deposits whereas the remaining 90% encompass lagoonal inter-reefal deposits. The reef development is a good example for the interaction between reef growth, facies development and sea-level changes. It was initiated by a sea-level rise (transgression) and corresponding decrease in the hydrodynamic energy level. Colonization and reef growth took place on a coarse-grained Substrate composed of oncoids, larger foraminifers and bioclasts. Reef growth took place in a calm marine lagoonal setting. Increasing abundance of spherical coral morphs towards the Northeast (section Kessiehausen, northwestem Süntel Mts) reflects higher turbidity and a facies transition to coral occurrences of the ßorigenuna-Bank Member in the adjacent Deister Mts. The reef growth was neither influenced by stonns nor by input of siliciclastic deposits, and took place in short time - probably in only a thousand years under most probably mesotrophic conditions. The mass appearance of solenoporids and nerineids in the upper part of the ßorigenuna-Bank Member point to enhanced nutrient level as a result of regression. In addition, this scenario of fluctuations in nutrient availability seems to be responsible for the cessation of reef corals. The sea level fall reached its climax in the subaerial exposure and palaeokarst development of the florigemma-Bank. The reef building corals are typical pioneer species. The blade-like, flattened F. amchnoides colonies are characterized by their light porous calcium carbonate skeleton, which is a distinct advantage in soft bottom environment. Thus, they settled on soft bottom exposing the large parts of its surface to the incoming light. On the other hand, in response to their light requirements they were also able to settle shaded canopy structures or reef caves. Th. dendroidea is an opportunistic coral species in very shallow, well illuminated marine environment. Their thin and densely spaced branches led to a very high surface/volume ratio of the colonies that were capable to exploit incoming light due to their small thamasterioid calices characterized by “highly integrated polyps”. In addition, sideward coalescence of branches during colony growth led to a wave-resistant framework and favoured the authochthonous preservation of the reefs. Asexual reproduction by fragmented colonies promoted reef development as Th. dendroidea thickets laterally extend over the sea floor or new reefs have developed from broken fragments of parent colonies. Similar build ups with Th. dendroidea as a dominant or frequent reef building coral species are known from the Paris Basin and elsewhere from the Lower Saxony Basin (Kleiner Deister Mts). These buildups developed in well-illuminated shallow water and encompass coral reefs or coral thrombolite reefs. Intra- and inter-reef deposits vary between well-winnowed reef debris limestone and mudstones representing considerably calmer conditions. Solenoporid, nerineids and diceratides belong to the characteristic fossils of these occurrences. However, diceratides are missing in theflorigemma-Bank Member. Th. dendroidea differs in its colonization of low- to high-energy environment from recent ramose scleractinian corals (e.g., Acropora and Porites sp.). The latter are restricted to agitated water habitats creating coral thickets and carpets. According to the morphologic plasticity of Th. dendroidea, thick-branched colonies developed in a milieu of high water energy, whereas fragile, wide- and thin-branched colonies prevail in low-energy settings. Due to its relatively rapid growth, Th. dendroidea was able to keep pace with increased Sedimentation rates. 68 benthonic foraminiferan species/taxa have been recognized in thin sections. Agglutinated foraminifers (textulariids) predominate when compared with rotaliids and milioliids. Numerous species are restricted to a certain facies type or occur in higher population densities, in particular Everticyclammina sp., a larger agglutinated foraminifer that occurs in rock building amounts. Among the 25 reef dwelling foraminiferal species, a few were so far only known from Late Jurassic sponge reefs. Another striking feature is the frequency of adherent foraminiferal species. Fauna and flora, in particular dasycladaleans and agglutinated foraminifers, document palaeobiogeographic relationships to the Tethys and point to (sub)tropical conditions. Moreover, in Germany this foraminiferan assemblage is yet uncompared. In Southern Germany similar tethyan type assemblages are not present in strata as young as Middle Tithonian.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento em Paleontologia. Faculdade de Ciências do Mar e do Ambiente, Univ. do Algarve, 2005