947 resultados para BRADYKININ-POTENTIATING PEPTIDES
Resumo:
Antimicrobial peptides occur in a diverse range of organisms from microorganisms to insects, plants and animals. Although they all have the common function of inhibiting or killing invading microorganisms they achieve this function using an extremely diverse range of structural motifs. Their sizes range from approximately 10-90 amino acids. Most carry an overall positive charge, reflecting a preferred mode of electrostatic interaction with negatively charged microbial membranes. This article describes the structural diversity of a representative set of antimicrobial peptides divided into five structural classes: those with agr-helical structure, those with bgr-sheet structure, those with mixed helical / bgr- sheet structure, those with irregular structure, and those incorporating a macrocyclic structure. There is a significant diversity in both the size and charge of molecules within each of these classes and between the classes. The common feature of their three-dimensional structures is, however, that they have a degree of amphipathic character in which there is separate localisation of hydrophobic regions and positively charged regions. An emerging trend amongst antimicrobial proteins is the discovery of more macrocyclic analogues. Cyclisation appears to impart an additional degree of stability on these molecules and minimizes proteolytic cleavage. In conclusion, there appear to be a number of promising opportunities for the development of novel clinically useful antimicrobial peptides based on knowledge of the structures of naturally occurring antimicrobial molecules.
Resumo:
Signal peptides and transmembrane helices both contain a stretch of hydrophobic amino acids. This common feature makes it difficult for signal peptide and transmembrane helix predictors to correctly assign identity to stretches of hydrophobic residues near the N-terminal methionine of a protein sequence. The inability to reliably distinguish between N-terminal transmembrane helix and signal peptide is an error with serious consequences for the prediction of protein secretory status or transmembrane topology. In this study, we report a new method for differentiating protein N-terminal signal peptides and transmembrane helices. Based on the sequence features extracted from hydrophobic regions (amino acid frequency, hydrophobicity, and the start position), we set up discriminant functions and examined them on non-redundant datasets with jackknife tests. This method can incorporate other signal peptide prediction methods and achieve higher prediction accuracy. For Gram-negative bacterial proteins, 95.7% of N-terminal signal peptides and transmembrane helices can be correctly predicted (coefficient 0.90). Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 99% (coefficient 0.92). For eukaryotic proteins, 94.2% of N-terminal signal peptides and transmembrane helices can be correctly predicted with coefficient 0.83. Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 87% (coefficient 0.85). The method can be used to complement current transmembrane protein prediction and signal peptide prediction methods to improve their prediction accuracies. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Venomous animals have evolved a vast array of peptide toxins for prey capture and defence. These peptides are directed against a wide variety of pharmacological targets, making them an invaluable source of ligands for studying the properties of these targets in different experimental paradigms. A number of these peptides have been used in vivo for proof-of-concept studies, with several having undergone preclinical or clinical development for the treatment of pain, diabetes, multiple sclerosis and cardiovascular diseases. Here we survey the pharmacology of venom peptides and assess their therapeutic prospects.
Resumo:
Os doentes com diabetes mellitus tipo 2 apresentam predisposição para a retenção de sódio e são frequentemente hipertensos. No entanto, os mecanismos implicados na dificuldade do rim diabético em mobilizar o sódio são, ainda, pouco compreendidos. Os peptídeos da família das guanilinas estão envolvidos na regulação do transporte de electrólitos e água nos epitélios intestinal e renal, através da activação do receptor guanilato ciclase-C (GC-C) e subsequente libertação intracelular de GMPc. O objectivo do presente estudo foi a avaliação da actividade do sistema dos peptídeos das guanilinas (SPG) e do seu papel na regulação do balanço de sódio num modelo animal de diabetes tipo 2. Ratinhos machos C57BL/6 foram submetidos a uma dieta com alto teor de gordura e rica em hidratos de carbono simples (ratinhos diabéticos) ou a uma dieta normal (ratinhos controlo). A expressão renal e intestinal da guanilina (GN), uroguanilina (UGN) e do receptor GC-C assim como os níveis de GMPc na urina e plasma foram avaliados nos ratinhos controlo e diabéticos, durante a ingestão de dietas normo (NS) e hiper-salina (HS). Nos ratinhos diabéticos, durante a dieta NS verificou-se um aumento significativo da pressão arterial que foi acompanhado de redução da expressão do ARNm da GN, UGN e do GC-C no intestino e de aumento da expressão de ARNm da UGN no rim. A dieta HS induziu um aumento da expressão do ARNm da UGN no jejuno dos ratinhos controlo mas não nos diabéticos. Os ratinhos diabéticos apresentaram níveis urinários de GMPc inferiores aos controlos, em condições de dieta NS. Em conclusão, os nossos resultados sugerem que na diabetes tipo 2 ocorre uma redução da actividade intestinal do SPG que é acompanhada por um aumento compensatório da actividade renal do SPG. A diminuição da actividade do SPG intestinal na diabetes tipo 2 deve-se não só a uma redução da expressão dos peptídeos GN e UGN, mas também a uma redução da expressão do seu receptor, GC-C. Estes resultados sugerem que o SPG pode contribuir para a sensibilidade ao sódio na diabetes.
Resumo:
Background: Chronic musculoskeletal pain involves connective tissue remodeling triggered by inflammatory mediators, such as bradykinin. Fibroblast cells signaling involve changes in intracellular Ca2+ ([Ca2+]i). ATP has been related to connective tissue mechanotransduction, remodeling and chronic inflammatory pain, via P2 purinoceptors activation. Here, we investigated the involvement of ATP in bradykinin-induced Ca2+ signals in human subcutaneous fibroblasts. Results: Bradykinin, via B2 receptors, caused an abrupt rise in [Ca2+]i to a peak that declined to a plateau, which concentration remained constant until washout. The plateau phase was absent in Ca2+-free medium; [Ca2+]i signal was substantially reduced after depleting intracellular Ca2+ stores with thapsigargin. Extracellular ATP inactivation with apyrase decreased the [Ca2+]i plateau. Human subcutaneous fibroblasts respond to bradykinin by releasing ATP via connexin and pannexin hemichannels, since blockade of connexins, with 2- octanol or carbenoxolone, and pannexin-1, with 10Panx, attenuated bradykinin-induced [Ca2+]i plateau, whereas inhibitors of vesicular exocytosis, such as brefeldin A and bafilomycin A1, were inactive. The kinetics of extracellular ATP catabolism favors ADP accumulation in human fibroblast cultures. Inhibition of ectonucleotidase activity and, thus, ADP formation from released ATP with POM-1 or by Mg2+ removal from media reduced bradykinin-induced [Ca2+]i plateau. Selective blockade of the ADP-sensitive P2Y12 receptor with AR-C66096 attenuated bradykinin [Ca2+]i plateau, whereas the P2Y1 and P2Y13 receptor antagonists, respectively MRS 2179 and MRS 2211, were inactive. Human fibroblasts exhibited immunoreactivity against connexin-43, pannexin-1 and P2Y12 receptor. Conclusions: Bradykinin induces ATP release from human subcutaneous fibroblasts via connexin and pannexin-1-containing hemichannels leading to [Ca2+]i mobilization through the cooperation of B2 and P2Y12 receptors.
Resumo:
Eight new peptides were isolated from the skin secretion of the frog Leptodactylus pustulatus and their amino acid sequences determined by de novo sequencing and by cDNA cloning. Structural similarities between them and other antimicrobial peptides from the skin secretion of Leptodactylus genus frogs were found. Ocellatins-PT1 to -PT5 (25 amino acid residues) are amidated at the C-terminus, while ocellatins-PT6 to -PT8 (32 amino acid residues) have free carboxylates. Antimicrobial activity, hemolytic tests, and cytotoxicity against a murine fibroblast cell line were investigated. All peptides, except for ocellatin-PT2, have antimicrobial activity against at least one Gram negative strain. Ocellatin-PT8 inhibited the growth of Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Salmonella choleraesuis strains with MICs in the 60−240 μM range. No significant effect was observed in human erythrocytes and in a murine fibroblast cell line after exposure to the peptides at MICs. A comparison between sequences obtained by both direct HPLC-MS de novo sequencing and cDNA cloning demonstrates the secretion of mature peptides derived from a pre-pro-peptide structure.
Resumo:
The main serological marker for the diagnosis of recent toxoplasmosis is the specific IgM antibody, along with IgG antibodies of low avidity. However, in some patients these antibodies may persist long after the acute/recent phase, contributing to misdiagnosis in suspected cases of toxoplasmosis. In the present study, the diagnostic efficiency of ELISA was evaluated, with the use of peptides derived from T. gondii ESA antigens, named SAG-1, GRA-1 and GRA-7. In the assay referred to, we studied each of these peptides individually, as well as in four different combinations, as Multiple Antigen Peptides (MAP), aiming to establish a reliable profile for the acute/recent toxoplasmosis with only one patient serum sample. The diagnostic performance of the assay using MAP1, with the combination of SAG-1, GRA-1 and GRA-7 peptides, demonstrated better discrimination of the acute/recent phase from non acute/recent phase of toxoplasmosis. Our results show that IgM antibodies to MAP1 may be useful as a serological marker, enhancing the diagnostic efficiency of the assay for acute/recent phase of toxoplasmosis.
Resumo:
Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry, Engineering and Technological Sciences
Resumo:
We analyzed the kinetics of cytokine production by mononuclear cells from 17 patients who had been treated for paracoccidioidomycosis, using the stimulus of gp43 peptide groups (43kDa glycoprotein of Paracoccidioides brasiliensis) at 0.1 and 1µM, gp43 (1µg/ml) and crude Paracoccidioides brasiliensis antigen (PbAg; 75µg/ml). IFN-gamma production was a maximum at 144 hours in relation to the G2 and G8 peptide groups at 1µM and was greatest at 144 hours when stimulated by gp43 and by PbAg. The maximum TNF-alpha production was at 144 hours for the G2 group (0.1µM) and for gp43. IL-10 production was highest after 48 and 72 hours for G7 and G6 at 1µM, respectively. We also suggest the best time for analysis of IL4 production. These results may contribute towards future studies with gp43 peptides and encourage further investigations with the aim of understanding the influence of these peptides on the production of inflammatory and regulatory cytokines.
Resumo:
Bradykinin is a peptide of the kinin group, involved in a number of receptor-mediated physiological actions, including inflammation and vasodilation, as well as neuromodulation, neuroprotection and promotion of neurogenesis. Bradykinin is the main ligand of the B2 receptor- the main kinin receptor- which is involved in the cardiac and renal protective effects of kinins in diseases. Antibodies have been considered for a long time as promising therapeutic agents in various fields, especially cancer-related ones. Aptamers, on the other hand, have proven to be an excellent alterative, since they have similar properties to those of monoclonal antibodies, such a high-specificity of recognition and high-affinity binding. Plus, they are developed using in vitro selection procedures and can be reproduced by enzymatic reactions. SELEX is a powerful tool for the development of both DNA and RNA aptamers. The main goal of this project was to design a method to select aptamers against bradykinin using capillary electrophoresis alongside the SELEX technique. The selection was done by comparing the aptamers’ (ssDNA-target complex) electrophoretic mobility with that of the ssDNA and the target, which allowed us to define an appropriate collection window that took into consideration the analytes’ detection time, thus enabling the collection of the desired oligonucleotides. After two selection rounds, the collected pool was sequenced, the affinity was measured and the aptamers’ secondary structure was predicted. We concluded that with only two selection cycles, the original DNA library’s bulk affinity grew around 0.4%. The structural characterization of the aptamers, performed with the aid of the Mfold software, revealed that there are many repetitive motifs amongst them, indicating that the selection process was successful. We have obtained 16 sequences of candidate aptamers as bradykinin ligands of similar sequences and secondary structures whose biological activity should be analyzed after synthesis; mainly in regard to their role as bradykinin inhibitors.
Resumo:
Comunicação oral convidada - IL4
Resumo:
Surgical site infections (SSI) often occur after invasive surgery, which is as a serious health problem, making it important to develop new biomaterials to prevent infections. Spider silk is a natural biomaterial with excellent biocompatibility, low immunogenicity and controllable biodegradability. Through recombinant DNA technology, spider silk-based materials can be bioengineered and functionalized with antimicrobial (AM) peptides 1. The aim of this study is to develop new materials by combining spider silk chimeric proteins with AM properties and silk fibroin extracted from Bombyx mori cocoons to prevent microbial infection. Here, spider silk domains derived from the dragline sequence of the spider Nephila clavipes (6 mer and 15 mer) were fused with the AM peptides Hepcidin and Human Neutrophil peptide 1 (HNP1). The spider silk domain maintained its self-assembly features allowing the formation of beta-sheets to lock in structures without any chemical cross-linking. The AM properties of the developed chimeric proteins showed that 6 mer + HNP1 protein had a broad microbicidal activity against pathogens. The 6 mer + HNP-1 protein was then assembled with different percentages of silk fibroin into multifunctional films. In vitro cell studies with a human fibroblasts cell line (MRC5) showed nontoxic and cytocompatible behavior of the films. The positive cellular response, together with structural properties, suggests that this new fusion protein plus silk fibroin may be good candidates as multifunctional materials to prevent SSI.
Resumo:
A large group of low molecular weight natural compounds that exhibit antimicrobial activity has been isolated from animals and plants during the past two decades. Among them, peptides are the most widespread resulting in a new generation of antimicrobial agents with higher specific activity. In the present study we have developed a new strategy to obtain antimicrobial wound-dressings based on the incorporation of antimicrobial peptides into polyelectrolyte multilayer films built by the alternate deposition of polycation (chitosan) and polyanion (alginic acid sodium salt) over cotton gauzes. Energy dispersive X ray microanalysis technique was used to determine if antimicrobial peptides penetrated within the films. FTIR analysis was performed to assess the chemical linkages, and antimicrobial assays were performed with two strains: Staphylococcus aureus (Gram-positive bacterium) and Klebsiella pneumonia (Gram-negative bacterium). Results showed that all antimicrobial peptides used in this work have provided a higher antimicrobial effect (in the range of 4 log–6 log reduction) for both microorganisms, in comparison with the controls, and are non-cytotoxic to normal human dermal fibroblasts at the concentrations tested.