971 resultados para Alpha-hydroxy acids
Resumo:
The variation of hardness as a function of the number of carbon atoms in alpha,omega-alkanedicarboxylic acids, CNH2N-2O4 (4 <= N <= 9), was examined by recourse to nanoindentation on the major faces of single crystals. Hardness exhibits odd-even alternation, with the odd acids being softer and the even ones harder; the differences decrease with increasing chain length. These variations are similar to those seen for other mechanical, physical, and thermal properties of these diacids. The softness of odd acids is rationalized due to strained molecular conformations in them, which facilitate easier plastic deformation. Relationships between structural features, such as interplanar spacing, interlayer separation distance, molecular chain length, and signatures of the nanoindentation responses, namely, discrete displacement bursts, were also examined. Shear sliding of molecular layers past each other during indentation is key to the mechanism for plastic deformation in these organic crystals.
Resumo:
The structural specificity of α-chymotrypsin for polypeptides and denatured proteins has been examined. The primary specificity of the enzyme for these natural substrates is shown to closely correspond to that observed for model substrates. A pattern of secondary specificity is proposed.
A series of N-acetylated peptide esters of varying length have been evaluated as substrates of α-chymotrypsin. The results are interpreted in terms of proposed specificity theories.
The α-chymotrypsin-catalyzed hydrolyses of a number of N-acetylated dipeptide methyl esters were studied. The results are interpreted in terms of the available specificity theories and are compared with results obtained in the study of polypeptide substrates. The importance of non-productive binding in determining the kinetic parameters of these substrates is discussed. A partial model of the locus of the active site which interacts with the R’1CONH- group of a substrate of the form R’1CONHCHR2COR’3 is proposed.
Finally, some reactive esters of N-acetylated amino acids have been evaluated as substrates of α-chymotrypsin. Their reactivity and stereo-chemical behavior are discussed in terms of the specificity theories available. The importance of a binding interaction between the carboxyl function of the substrate and the enzyme is suggested by the results obtained.
Resumo:
Rhizopus delemar lipase catalyzed ester hydrolysis of the alpha-methoxy-beta-phenylpropanoate (I) affords the (R)-(+) and (S)-(-) isomers in > 84% enantiomeric excess. Abs. stereochem. was detd. by a single crystal X-ray anal. of a related synthetic analog. The activity of these two enantiomers on glucose transport in vitro and as anti-diabetic agents in vivo is reported and their unexpected equivalence attributed to an enzyme-mediated stereospecific isomerization of the (R)-(+) isomer. Binding studies using recombinant human PPAR-gamma (peroxisomal proliferator activated receptor gamma), now established as a mol. target for this compd. class, indicate a 20-fold higher binding affinity for the (S) antipode relative to the (R) antipode.
Resumo:
Buckle, D. R.; Cantello, B. C. C.; Cawthorne, M. A.; Coyle, P. J.; Dean, D. K.; Faller, A.; Haigh, D.; Hindley, R. M.; Lefcott, L. J.; et al. Dep. Medicinal Chem., Smithkline Beecham Pharmaceuticals, Surrey, UK. Bioorganic & Medicinal Chemistry Letters (1996), 6(17), 2127-2130. Publisher: Elsevier, CODEN: BMCLE8 ISSN: 0960-894X. Journal written in English. CAN 125:238227 AN 1996:573179 CAPLUS (Copyright (C) 2009 ACS on SciFinder (R)) Abstract The thiazolidine-2,4-dione ring of insulin-sensitizing antidiabetic agents can be replaced by ?-acyl-, ?-alkyl- and ?-(aralkyl)-carboxylic acids. The inclusion of an addnl. lipophilic moiety affords compds., equipotent to BRL 48482.
Resumo:
A review with 22 refs. The 5-benzylthiazolidine-2,4-dione moiety of insulin sensitizing antidiabetic agents can be replaced by a range of ?-heteroatom functionalized ?-phenylpropanoic acids. ?-Oxy-carboxylic acids show potent antidiabetic activity and one compd., the ?-ethoxyacid (SB 213068), is one of the most potent antihyperglycemic agents yet reported.
Resumo:
A number of synthetically useful ring systems can be prepared via the intramolecular insertion of a metal-stabilized carbenoid into a heteroaromatic systems. The chemical outcome of these reactions are dependent not only on the nature of the heteroatom but also on the length of the aliphatic tether linking the carbenoid moiety with the aromatic fragment. Our work with furanyl and thienyl systems containing a single methylene tether have allowed for some rather atypical chemistry. For example, treatment of l-diazo-3-(2-thienyl)-2-propanone (6) with catalytic rhodium (II) acetate yields 5,6- dihydro-4^-cyclopenta[Z>]thiophen-5-one (3) while, the isomeric l-diazo-3-(3-thienyl)-2- propanone(15) gives a spiro-disulphide (20). Novel chemistry was also exhibited in the analogous furanyl systems. While treatment of l-diazo-3-(3-furanyl)-2-propanone (52) with Rh2(OAc)4 resulted in the expected 2-(4-Oxo-2-cyclopentenyliden)acetaldehyde (54), isomeric l-diazo-3-(2- furanyl)-2-propanone (8) undergoes vinylogous Wolff rearrangement to give a mixture of 6a-methyl-2,3,3a,6a-tetrahydrofuro[2,i-^>]furan-2-one (44) and 2-(2-methyl-3-furyl)acetic acid (43). Rhodium acetate catalyzed decomposition of l-diazo-3-(3-benzofuranyl)-2- propanone (84) and l-diazo-3-(2-benzofuranyl)-2-propanone (69)also allows for vinylogous Wolff rearrangement, a chemistry unseen in benzofuranyl systems with longer tethers. A number of interesting products were isolated from the trapping of intermediate ketenes. Decomposition of l-diazo-3-(3-benzothienyl)-2-propanone (100) resulted in the formation of 2,3-dihydro-l//-benzo[^]cyclopenta[^thiophen-2-one (102). However, in addition to (102), a dimer was also generated from the decomposition of l-diazo-3-(2- benzothienyl)-2-propanone (109). The insight into the mechanistic underpinnings of the above reactions are provided by molecular modeling at a PM3 level.
Resumo:
Recent studies have shown that the rhodium (II) acetate decomposition chemistry observed for a-diazoketones tethered to thienyl, furanyl, and benzofuranyl moieties is dependent not only on the nature of the heteroatom but also on the length of the aliphatic tether linking the diazoketone moiety with the aromatic fragment. The present thesis expands on these results and focuses on a-diazoketones tethered to benzothiophenes, pyrroles and indoles by a methylene linker. In the case of benzothiophenes, it was shown that the rhodium catalyst decomposition of I-diazo-4-(3-benzothienyl)-2-butanone (146) and 1-diazo-4-(3benzothienyl)- 2-butanone (152) allow for the isolation of 1,2,3a,3b-tetrahydro-3Hbenzo[ b]cyclopenta[1,3]cyclopropa- [1 ,2-d]thiophen-3-one (147) and 1,2,3a,3btetrahydro- 3H-benzo[b]cyclopenta[1,3]cyclopropa[1,2-d]thiophen-3-one (153). However treatment of 1-diazo-3-(3-Benzothienyl)-2-Propanone (165) with Rh(II) acetate results in the formation of 2,3-Dihydro-1H-benzo[b]cyclopenta[d]thiophen-2-one (159), while 1diazo- 3-(2-Benzothienyl)-2-Propanone with the same condition gives 5,5-bis( 1benzothiophen- 2-ylmethyl)-2(5H)-furanone (166) along with the tricycle 159. The chemistry of the pyrrolyl and the indolyl moieties linked to terminal adiazoketone systems was also investigated. The decomposition of I-diazo-(2-pyrrolyl)-2propanone (173) results in the formation of two products; the N-H insertion product IHpyrrolizin- 2(3H)-one (176) and the alkylation product 4,6-dihydrocyclopenta[b]pyrrol5( 1 H)-one (180). When 1-Diazo-3-(3-indoly)-3-propanone (194) is treated with catalytic amount of Rh (II) 3,4-dihydrocyclopenta[b]indol-2(1H)-one (193) is isolated quantitatively. The later reaction when monitored using IH NMR the intermediate 200 can be seen whose structure was confirmed by the comparison to series of model compounds. The mechanisms underlying these reactions as well as their synthetic utility is discussed.
Resumo:
We report herein, the first generation of unsymmetrical ketone-derived chiral stabilized azomethine ylides. Intrairiolecular and intermolecular cycloaddition strategies have been utilized to synthesize both an enantiornerically pure bicyclic proline derivative and an enantionierically pure beta-hydroxy-alpha-amino acid.
Resumo:
Single crystal X-ray diffraction studies reveal that three hexapeptides with general formula Boc-Ile-Aib-Xx-Ile-Aib-Yy-OMe, where Xx and Yy are Leu in peptide I, Len and Phe in peptide II, and Phe and Leu in peptide III, respectively, adopt equivalent conformations that can be described as mixed 3(10)/alpha-helice with two 4 -> 1 and two 5 -> 1 intramolecular N-H center dot center dot center dot O=C H-bonds. The peptides do not generate any helixterminating Schellman motif despite having Aib at the penultimate position from C-terminus. In the crystalline state, the helices are packed in head-to-tail fashion through intermolecular hydrogen bonds to create supramolecular helical structures. The CD Studies of the three hexapeptides in acetonitrile indicate that they are folded in well-developed 3(10)-helical structures. NMR studies of peptide I in CDCl3 also suggest the formation of a homogeneous 3 m-helical structure. The field emission scanning electron microscopic (FE-SEM) images of peptide 11 in the solid state reveal a non-twisted ribbon-like morphology, which is formed through lateral association of non-twisted filaments. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The effect of increased dietary intakes of alpha-linolenic acid (ALNA) or eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for 2 months upon plasma lipid composition and capacity for conversion of ALNA to longer-chain metabolites was investigated in healthy men (52 (SD 12) years). After a 4-week baseline period when the subjects substituted a control spread, a test meal containing [U-C-13]ALNA (700 mg) was consumed to measure conversion to EPA, docosapentaenoic acid (DPA) and DHA over 48 h. Subjects were then randomised to one of three groups for 8 weeks before repeating the tracer study: (1) continued on same intake (control, n 5); (2) increased ALNA intake (10 g/d, n 4); (3) increased EPA+DHA intake (1.5 g/d, n 5). At baseline, apparent fractional conversion of labelled ALNA was: EPA 2.80, DPA 1.20 and DRA 0.04%. After 8 weeks on the control diet, plasma lipid composition and [C-13]ALNA conversion remained unchanged compared with baseline. The high-ALNA diet resulted in raised plasma triacylglycerol-EPA and -DPA concentrations and phosphatidylcholine-EPA concentration, whilst [C-13]ALNA conversion was similar to baseline. The high-(EPA+DHA) diet raised plasma phosphatidylcholine-EPA and -DHA concentrations, decreased [C-13]ALNA conversion to EPA (2-fold) and DPA (4-fold), whilst [C-13]ALNA conversion to DHA was unchanged. The dietary interventions did not alter partitioning of ALNA towards beta-oxidation. The present results indicate ALNA conversion was down-regulated by increased product (EPA+DHA) availability, but was not up-regulated by increased substrate (ALNA) consumption. This suggests regulation of ALNA conversion may limit the influence of variations in dietary n-3 fatty acid intake on plasma lipid compositions.
Resumo:
The interactions between hydroxypropylmethylcellulose (HPMC) and poly(acrylic acid) (PAA) as well as poly(methacrylic acid) (PMMA) resulting in formation of hydrophobic interpolymer complexes (IPC) via hydrogen bonding have been studied in aqueous solutions in acidic medium. The formation of IPC of two different compositions (2:1 and 4:1) has been detected for complexes of PAA and HPMC. The critical pH values for complexation of HPMC with PAA and PMAA were determined by the turbidimetric method. It was found that PAA shows the lower complexation ability compared to PMAA due to the more hydrophobic nature of the latter polyacid. The temperature-induced phase separation in HPMC-PAA solution mixtures depends greatly on the components ratio and PAA molecular weight. The complexation ability of hydroxypropylmethylcellulose with respect to poly(acrylic acid) was found to be similar to the complexation ability of methylcellulose, lower than that of hydroxypropylcellulose and higher than that of hydroxyethylcellulose. (c) 2006 Society of Chemical Industry.
Resumo:
The reported effects of different families of fatty acids (FA; SFA, MUFA, n-3 and n-6 PUFA) on human health and the importance of macrophage respiratory burst and cytokine release to immune defence led us to examine the influence of palmitic acid (PA), oleic acid (OA), linoleic acid, arachidonic acid, EPA and DHA on macrophage function. We determined fungicidal activity, reactive oxygen species (ROS) and cytokine production after the treatment of J774 cells with non-toxic concentrations of the FA. PA had a late and discrete stimulating effect on ROS production, which may be associated with the reduced fungicidal activity of the cells after treatment with this FA. OA presented a sustained stimulatory effect on ROS production and increased fungicidal activity of the cells, suggesting that enrichment of diets with OA may be beneficial for pathogen elimination. The effects of PUFA on ROS production were time-and dose-dependently regulated, with no evident differences between n-3 and n-6 PUFA. It was worth noting that most changes induced after stimulation of the cells with lipopolysaccharide were suppressed by the FA. The present results suggest that supplementation of the diet with specific FA, not classes of FA, might enable an improvement in host defence mechanisms or a reduction in adverse immunological reactions.
Resumo:
Many macrophage functions are modulated by fatty acids (FAs), including cytokine release, such as tumor necrosis factor-alpha (TNF-alpha). TNF-alpha is of great interest due to its role in the inflammation process observed in several diseases such as rheumatoid arthritis, atherosclerosis, and obesity. However, the mechanisms by which FA effects occur have not been completely elucidated yet. In this study, we used a mouse monocyte lineage (J774 cells) to evaluate the effect of 50 and 100 mu M of saturated (palmitic and stearic acids), monounsaturated (oleic acid) and polyunsaturated (linoleic acid) FAs on TNF-alpha production. Alterations in gene expression, poly(A) tail length and activation of transcription factors were evaluated. Oleic and linoleic acids, usually known as neutral or pro-inflammatory FA, inhibited LPS-induced TNF-alpha secretion by the cells. Saturated FAs were potent inducers of TNF-alpha expression and secretion under basal and inflammatory conditions (in the presence of LPS). Although the effect of the saturated FA was similar, the mechanism involved in each case seem to be distinct, as palmitic acid increased EGR-1 and CREB binding activity and stearic acid increased mRNA poly(A) tail. These results may contribute to the understanding of the molecular mechanisms by which saturated FAs modulate the inflammatory response and may lead to design of associations of dietary and pharmacological strategies to counteract the pathological effects of TNF-alpha.