958 resultados para 290301 Robotics and Mechatronics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A definition of medium voltage (MV) load diagrams was made, based on the data base knowledge discovery process. Clustering techniques were used as support for the agents of the electric power retail markets to obtain specific knowledge of their customers’ consumption habits. Each customer class resulting from the clustering operation is represented by its load diagram. The Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) were applied to an electricity consumption data from a utility client’s database in order to form the customer’s classes and to find a set of representative consumption patterns. The WEACS approach is a clustering ensemble combination approach that uses subsampling and that weights differently the partitions in the co-association matrix. As a complementary step to the WEACS approach, all the final data partitions produced by the different variations of the method are combined and the Ward Link algorithm is used to obtain the final data partition. Experiment results showed that WEACS approach led to better accuracy than many other clustering approaches. In this paper the WEACS approach separates better the customer’s population than Two-step clustering algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Processes are a central entity in enterprise collaboration. Collaborative processes need to be executed and coordinated in a distributed Computational platform where computers are connected through heterogeneous networks and systems. Life cycle management of such collaborative processes requires a framework able to handle their diversity based on different computational and communication requirements. This paper proposes a rational for such framework, points out key requirements and proposes it strategy for a supporting technological infrastructure. Beyond the portability of collaborative process definitions among different technological bindings, a framework to handle different life cycle phases of those definitions is presented and discussed. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A robótica tem evoluído de forma significativa nos últimos anos e passa a ser indispensável em várias aplicações nas áreas da engenharia, aeronáutica, medicina, entre outras. O estado da arte do presente trabalho está dividido em duas partes, uma que aborda vários aspetos relacionados com a robótica e outra com os aspetos da fundamentação matemática por de trás da robótica, porque para controlar o robô é necessário implementar expressões matemáticas para o poder controlar. Neste trabalho é apresentado um sistema de controlo do braço robótico MENTOR e o desenvolvimento de uma interface para o utilizador. Para o controlo do braço robótico foi necessário calcular a cinemática direta e inversa, para que se possa obter os ângulos das juntas para uma dada posição ou qual é a posição final do braço robótico para um valor das juntas. O sistema é bastante flexível e foi desenvolvido para ser utilizado essencialmente para aprendizagem de robótica, podendo no entanto ser utilizado em outras aplicações.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Darwinian Particle Swarm Optimization (DPSO) is an evolutionary algorithm that extends the Particle Swarm Optimization using natural selection to enhance the ability to escape from sub-optimal solutions. An extension of the DPSO to multi-robot applications has been recently proposed and denoted as Robotic Darwinian PSO (RDPSO), benefiting from the dynamical partitioning of the whole population of robots, hence decreasing the amount of required information exchange among robots. This paper further extends the previously proposed algorithm adapting the behavior of robots based on a set of context-based evaluation metrics. Those metrics are then used as inputs of a fuzzy system so as to systematically adjust the RDPSO parameters (i.e., outputs of the fuzzy system), thus improving its convergence rate, susceptibility to obstacles and communication constraints. The adapted RDPSO is evaluated in groups of physical robots, being further explored using larger populations of simulated mobile robots within a larger scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cooperating objects (COs) is a recently coined term used to signify the convergence of classical embedded computer systems, wireless sensor networks and robotics and control. We present essential elements of a reference architecture for scalable data processing for the CO paradigm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of appearance-based robot localization, the mainstream approach uses a quantized representation of local image features. An alternative strategy is the exploitation of raw feature descriptors, thus avoiding approximations due to quantization. In this work, the quantized and non-quantized representations are compared with respect to their discriminativity, in the context of the robot global localization problem. Having demonstrated the advantages of the non-quantized representation, the paper proposes mechanisms to reduce the computational burden this approach would carry, when applied in its simplest form. This reduction is achieved through a hierarchical strategy which gradually discards candidate locations and by exploring two simplifying assumptions about the training data. The potential of the non-quantized representation is exploited by resorting to the entropy-discriminativity relation. The idea behind this approach is that the non-quantized representation facilitates the assessment of the distinctiveness of features, through the entropy measure. Building on this finding, the robustness of the localization system is enhanced by modulating the importance of features according to the entropy measure. Experimental results support the effectiveness of this approach, as well as the validity of the proposed computation reduction methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted for a PhD degree in Electrical Engineering, speciality of Robotics and Integrated Manufacturing from the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented at the Faculty of Sciences and Technology of the New University of Lisbon to obtain the degree of Doctor in Electrical Engineering, specialty of Robotics and Integrated Manufacturing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The project started in 2009 with the support of DAAD in Germany and CRUP in Portugal under the “Collaborative German-Portuguese University Actions” programme. One central goal is the further development of a theory of technology assessment applied to robotics and autonomous systems in general that reflects in its methodology the changing conditions of knowledge production in modern societies and the emergence of new robotic technologies and of associated disruptive changes. Relevant topics here are handling broadened future horizons and new clusters of science and technology (medicine, engineering, interfaces, industrial automation, micro-devices, security and safety), as well as new governance structures in policy decision making concerning research and development (R

Relevância:

100.00% 100.00%

Publicador:

Resumo:

in RoboCup 2007: Robot Soccer World Cup XI

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a hybrid coordinated manoeuvre for docking an autonomous surface vehicle with an autonomous underwater vehicle. The control manoeuvre uses visual information to estimate the AUV relative position and attitude in relation to the ASV and steers the ASV in order to dock with the AUV. The AUV is assumed to be at surface with only a small fraction of its volume visible. The system implemented in the autonomous surface vehicle ROAZ, developed by LSA-ISEP to perform missions in river environment, test autonomous AUV docking capabilities and multiple AUV/ASV coordinated missions is presented. Information from a low cost embedded robotics vision system (LSAVision), along with inertial navigation sensors is fused in an extended Kalman filter and used to determine AUV relative position and orientation to the surface vehicle The real time vision processing system is described and results are presented in operational scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes the signals captured during impacts and vibrations of a mechanical manipulator. The Fourier Transform of eighteen different signals are calculated and approximated by trendlines based on a power law formula. A sensor classification scheme based on the frequency spectrum behavior is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The underground scenarios are one of the most challenging environments for accurate and precise 3d mapping where hostile conditions like absence of Global Positioning Systems, extreme lighting variations and geometrically smooth surfaces may be expected. So far, the state-of-the-art methods in underground modelling remain restricted to environments in which pronounced geometric features are abundant. This limitation is a consequence of the scan matching algorithms used to solve the localization and registration problems. This paper contributes to the expansion of the modelling capabilities to structures characterized by uniform geometry and smooth surfaces, as is the case of road and train tunnels. To achieve that, we combine some state of the art techniques from mobile robotics, and propose a method for 6DOF platform positioning in such scenarios, that is latter used for the environment modelling. A visual monocular Simultaneous Localization and Mapping (MonoSLAM) approach based on the Extended Kalman Filter (EKF), complemented by the introduction of inertial measurements in the prediction step, allows our system to localize himself over long distances, using exclusively sensors carried on board a mobile platform. By feeding the Extended Kalman Filter with inertial data we were able to overcome the major problem related with MonoSLAM implementations, known as scale factor ambiguity. Despite extreme lighting variations, reliable visual features were extracted through the SIFT algorithm, and inserted directly in the EKF mechanism according to the Inverse Depth Parametrization. Through the 1-Point RANSAC (Random Sample Consensus) wrong frame-to-frame feature matches were rejected. The developed method was tested based on a dataset acquired inside a road tunnel and the navigation results compared with a ground truth obtained by post-processing a high grade Inertial Navigation System and L1/L2 RTK-GPS measurements acquired outside the tunnel. Results from the localization strategy are presented and analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a multi-robot cooperative framework to estimate the 3D position of dynamic targets, based on bearing-only vision measurements. The uncertainty of the observation provided by each robot equipped with a bearing-only vision system is effectively addressed for cooperative triangulation purposes by weighing the contribution of each monocular bearing ray in a probabilistic manner. The envisioned framework is evaluated in an outdoor scenario with a team of heterogeneous robots composed of an Unmanned Ground and Aerial Vehicle.