996 resultados para silicon microchannel
Resumo:
Erbium-implanted silicones were treated by lamp-heating rapid thermal annealing (RTA). Two types of erbium-related photoluminescence spectra appear under different anneal temperatures. 750 degrees C annealing optimizes the luminescence intensity, which does not change with anneal time. Exciton-mediated energy transfer model in erbium-doped silicon was presented. The emission intensity is related to optical active erbium concentration, lifetime of excited Er3+ ion and spontaneous emission time. The thermal quenching of the erbium luminescence in Si is caused by thermal ionization of erbium-bound exciton complex and nonradiative energy backtransfer processes, which correspond to the activation energy of 6.6 meV and 47.4 meV respectively.
Resumo:
High quality cubic GaN was grown on Silicon (001) by metalorganic vapor phase epitaxy (MOVPE) using a GaAs nucleation layer grown at low temperature. The influence of various nucleation conditions on the GaN epilayers' quality was investigated. We found that the GaAs nucleation layer grown by atomic layer epitaxy (ALE) could improve the quality of GaN films by depressing the formation of mixed phase. Photoluminescence (PL) and X-ray diffraction were used to characterize the properties of GaN epilayers. High quality GaN epilayers with PL full width at half maximum (FWHM) of 130meV at room temperature and X-ray FWHM of 70 arc-min were obtained by using 10-20nm GaAs nucleation layer grown by ALE.
Resumo:
Isochronal thermal-annealing behavior of NTD floating-zone silicon grown in hydrogen ambient (called NTD FZ(H) Si) is presented. The dependencies of resistivity and carrier mobility on annealing temperature are determined by room-temperature Hall electrical measurements. Using infrared absorption spectroscopy, hydrogen-related infrared absorption bands evolution for NTD FZ(H) Si were measured in detail. It is demonstrated that compared with NTD FZ(Ar) Si, NTD FZ(H) Si exhibits the striking features upon isochronal annealing in temperature range of 150 similar to 650 degreesC: there appears the formation of an excessive shallow donor at annealing temperature of 500 degreesC. It is shown that the annealing behavior is directly related to the reaction of hydrogen and irradiation-induced defects. The evolution of infrared absorption bands upon temperature reflects a series of complex reaction process: irradiation-induced defects decomposition, breaking of Si-H bonds, migration and aggregation of atomic hydrogen, and formation of the secondary defects. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Argon gas, as a protective environment and carrier of latent heat, has an important effect on the temperature distribution in crystals and melts. Numeric simulation is a potent tool for solving engineering problems. In this paper, the relationship between argon gas flow and oxygen concentration in silicon crystals was studied systematically. A flowing stream of argon gas is described by numeric simulation for the first time. Therefore, the results of experiments can be explained, and the optimum argon flow with the lowest oxygen concentration can be achieved. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Silicon-on-insulator (SOI) has been recognized as a promising semiconductor starting material for ICs where high speed and low power consumption are desirable, in addition to its unique applications in radiation-hardened circuits. In the present paper, three novel SOI nano-layer structures have been demonstrated. ULTRA-THIN SOI has been fabricated by separation by implantation of oxygen (SIMOX) technique at low oxygen ion energy of 45 keV and implantation dosage of 1.81017/cm2. The formed SOI layer is uniform with thickness of only 60 nm. This layer is of crystalline quality. and the interface between this layer and the buried oxide layer is very sharp, PATTERNED SOI nanostructure is illustrated by source and drain on insulator (DSOI) MOSFETs. The DSOI structure has been formed by selective oxygen ion implantation in SIMOX process. With the patterned SOI technology, the floating-body effect and self-heating effect, which occur in the conventional SOI devices, are significantly suppressed. In order to improve the total-dose irradiation hardness of SOI devices, SILICON ON INSULATING MULTILAYERS (SOIM) nano-structure is proposed. The buried insulating multilayers, which are composed of SiOx and SiNy layers, have been realized by implantation of nitride and oxygen ions into silicon in turn at different ion energies, followed by two steps of high temperature annealing process, respectively, Electric property investigation shows that the hardness to the total-dose irradiation of SOIM is remarkably superior to those of the conventional SIMOX SOI and the Bond-and-Etch-Back SOI.
Resumo:
The gamma-Al2O3 films were grown on Si (100) substrates using the sources of TMA (Al (CH3)(3)) and O-2 by very low-pressure chemical vapor deposition (VLP-CVD). It has been found that the gamma-Al2O3 film has a mirror-like surface and the RMS was about 2.5nm. And the orientation relationship was gamma-Al2O3(100)/Si(100). The thickness uniformity of gamma-Al2O3 films for 2-inch epi-wafer was less than 5%. The X-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED) results show that the crystalline quality of the film was improved after the film was annealed at 1000degreesC in O-2 atmosphere. The high-frequency C-V and leakage current of Al/gamma-Al2O3/Si capacitor were also measured to verify the annealing effect of the film. The results show that the dielectric constant increased from 4 to 7 and the breakdown voltage for 65-nm-thick gamma-Al2O3 film on silicon increases from 17V to 53V.