1000 resultados para Enseñanza de las matemáticas
Resumo:
Se describen algunas formas de aplicar los trabajos manuales a la enseñanza de las matemáticas. La cartulina y las tijeras tienen valor didáctico para que los niños aprendan las fracciones, las medidas de longitud y de superficie, el valor de los ángulos de un triángulo y el teorema de Pitágoras. Se dan indicaciones para la confección de poliedros regulares y otros sólidos geométricos, de mosaicos con motivos geométricos y de señales de circulación.
Resumo:
Resumen basado en el de la publicación
Resumo:
El dominio sobre matemática que se estudia en el proyecto PISA 2003 se conoce como alfabetización matemática o competencia matemática. Este dominio se refiere a las capacidades de los estudiantes para analizar, razonar y comunicar eficazmente cuando resuelven o enuncian problemas matemáticas en una variedad de situaciones y dominios. El foco de evaluación PISA 2003 se centra pues en cómo los estudiantes pueden utilizar lo que han aprendido en situaciones usuales de la vida cotidiana y no sólo en conocer cuáles son los contenidos del currículo que han aprendido. Se consideran cuatro significados distintos sobre la noción de competencia en el informe PISA: la competencia como dominio de estudio, como conjunto de procesos generales, como tres niveles de complejidad y como nivel alcanzado por los alumnos.
Resumo:
Resumen basado en el del autor
Resumo:
Convocatoria de Premios Nacionales de Investigación e Innovación Educativa 2005, modalidad de Innovación Educativa, segundo premio. Resumen basado en el de los autores
Resumo:
Presentar los Métodos de Aprendizaje Cooperativo (MAC), sus características y sus dimensiones. Analizar las investigaciones recientemente realizadas sobre los MAC y las aplicaciones de éstos en la enseñanza de las matemáticas.. Se analiza la bibliografía existente sobre la interacción educativa, tanto en la relación profesor/alumno como en la interacción alumno/alumno. Se procede a la definición del aprendizaje cooperativo, sus características y dimensiones: 1. Filosofía de la educación, 2. Naturaleza del aprendizaje, 3. Naturaleza de la cooperación, 4. Rol del alumno y cooperación, 5. Rol del profesor, 6. Evaluación, 7. Identificación, 8. Recursos. Se presentan los MAC más utilizados y las diferencias y similitudes existentes entre ellos. Se procede al análisis del aprendizaje cooperativo en matemáticas y a la presentación de los métodos más empleados: 1. Small Group Learning and Teaching in Mathematics, 2. Team Assisted Individualization (TAI), 3. Aprender matemáticas cooperando (MACIN). Finalmente, se analiza la presencia de los MAC en la estructura del sistema curricular español.. La introducción de los MAC en el proceso de aprendizaje supone la introducción previa de un clima de cooperación. Una de las facetas en la que los MAC se muestran más eficientes es la de la integración de minorias étnicas y de los sujetos con déficits físicos, psíquicos y/o sensoriales. La estructura de las tareas en matemáticas permite una modificabilidad menor en las dimensiones de los MAC aplicados a estos contenidos que en cualquier otra disciplina. Fecha finalización tomada del Código del Documento.
Resumo:
1. Mostrar la importancia que una ciencia como la Matemática tiene en nuestros días. 2. Demostrar determinadas conexiones establecidas entre la psicología del aprendizaje y la moderna estructuración de los contenidos matemáticos. 3. Ofrecer una alternativa válida (más adecuada que la tradicional) a la Enseñanza de las Matemáticas. En concreto, se pretende averiguar si la construcción espontánea del número racional se aproxima al punto de vista del mismo basado en la idea de operador o en un concepto intuitivo de número racional. 57 alumnos de sexto de EGB y 51 alumnos de séptimo de EGB de nivel socio-económico medio. El diseño experimental corresponde al denominado de cuatro grupos: dos grupos controles y dos experimentales. Los grupos controles de sexto y séptimo de EGB trabajaron con el punto de vista basado en un concepto de número racional intuitivo y los grupos experimentales trabajaron con un punto de vista de número racional basado en la idea de operador. Se midió el rendimiento en dos pruebas de conocimientos. Prueba A sobre números racionales elaborada adhoc. Prueba B elaborada por la International Asociation for the Evaluation of Educational Achievement. Porcentajes. Se pone de manifiesto que existen entre varios grupos de alumnos diferencias notables a la hora de hacer efectivos sus conocimientos sobre el concepto y operaciones de números racionales. Así, aunque no se puede afirmar que dichas diferencias se deban a la variable tratamiento (distinta en cada caso), los datos obtenidos alegan por una mayor bondad del proceso de aprendizaje seguido por los grupos experimentales. El proceso de aprendizaje experimental ofrece más oportunidades, por la utilización de métodos basados en el descubrimiento personal del alumno. Consecuentemente facilita su desarrollo lógico basado en el propio hacer y sustituye conductas mecanicistas o automatizadas por aquellas otras en las cuales se da más opción al razonamiento.
Resumo:
Introducir la noción matemática del límite siguiendo el método inductivo que ha seguido en su evolución histórica, opuesta al método tradicional, deductivo, utilizado en la totalidad de los manuales y libros de texto. La introducción al concepto se realiza a través de los ejercicios clásicos que permitieron las primeras aproximaciones al concepto de límite. Hipótesis: si el método experimental propuesto es efectivo, aplicado a una clase de alumnos universitarios, ha de producir mejores resultados en la adquisición del concepto de límite que si se hiciera siguiendo el método tradicional. 61 alumnos universitarios de la Facultad de Biología y de la Escuela Universitaria de Magisterio (primero y tercero respectivamente) de edades comprendidas entre los 18 y los 20 años. La investigación comienza con un recorrido histórico sobre la evolución de la noción de límite matemático, desde las civilizaciones antiguas hasta la actualidad (Weierstrass y Frechet). A continuación se introduce la idea de infinito y se hace una revisión de estos conceptos en los manuales universitarios más utilizados, así como en los de BUP y COU. Se procede a un estudio comparado entre el desarrollo histórico del concepto y el presentado en los manuales para llegar a la formulación de una propuesta metodológica renovada en cuanto a la adquisición de este concepto por parte del alumnado universitario. La parte experimental se realizó durante el primer trimestre del curso 89-90. El diseño metodológico pretest-programa experimental-posttest se dividió en tres etapas: elaboración, aplicación y corrección (resultados) de la prueba matemática sobre el concepto límite (ejercicios sobre límites, resolución de un problema matemático que lleve aparejado el cálculo de un límite, cálculo del límite a partir de la gráfica de la función y dado el límite de una función en un punto, escribir la función). La segunda etapa se dedicó a desarrollar el concepto de límite siguiendo el método tradicional y el experimental en cada uno de los dos grupos (dos grupos de primero de Biología y dos grupos de tercero de Magisterio). La nueva metodología se basó en llegar al concepto a través del problema concreto (Piaget). En la tercera se volvió a pasar la prueba a los dos grupos y se dió tratamiento estadístico a los datos. Resultados y conclusiones. De los datos obtenidos se desprende que la diferencia, en función del método empleado ha sido notable por lo que a los cuatro apartados del test se refiere. Esta diferencia se decanta significativamente en favor de método experimental, sobre el que se deseaba constatar su eficacia en cuanto al mayor rendimiento de los alumnos en la adqusición del concepto. El método juega un papel muy importante en la adquisición de los conocimientos, variando el método de enseñanza, varían los resultados obtenidos por los alumnos en el proceso de aprendizaje. El modelo de enseñanza activo y participativo mejora el rendimiento, así como el método experimental (inductivo) sobre el tradicional (deductivo). Se pone de manifiesto la necesidad de implantar una nueva metodología en el campo de la enseñanza de las Matemáticas.
Resumo:
La dificultad en la resolución de problemas no sólo estriba en realizar operaciones de suma, resta, multiplicación y división sino que hay varios factores. Se trata de analizar los conceptos implicados en el desarrollo del pensamiento matemático. Las características de los problemas con estructura aditiva y multiplicativa que aparecen en los libros de texto de matemáticas de Educación Primaria. Analizar el rol de los problemas verbales en los libros de texto de matemáticas y la orientación que tienen las creencias del profesor acerca de la enseñanza-aprendizaje de la matemática elemental. Indagar cómo se encuentran los conocimientos de contenido pedagógico del profesor respecto a los diferentes tipos de problemas aditivos. En el primer análisis de los libros de texto en el ámbito de las matemáticas, los datos que se presentan en el estudio, se obtienen de cuatro editoriales. La editorial Santillana (1999) y Anaya (2002) en el caso de España y la editorial Fundación Alianza (2000) y Don Bosco (2000) en el caso de Paraguay. Se analizan en total 24 libros de Educación Primaria. Para el segundo análisis, del rol que juegan los problemas en el libro de texto se ha considerado además del libro del alumno, el libro guía del profesor de las dos editoriales españolas, porque contienen aspectos específicos como el programa que se promueve para la resolución de problemas y estrategias. En cuanto al estudio del pensamiento del profesor se presentan 200 profesores de España y Paraguay, se incluyen en la muestra 26 colegios públicos de ambos países, 13 concertados pertenecientes a la ciudad de Salamanca y 15 colegios privados (instituciones católicas) de Paraguay. Se presenta un cuestionario para evaluar las creencias del profesor acerca de la enseñanza de las matemáticas, otro para la práctica educativa y otro orientado a analizar el conocimietno del profesor a partir de la estimación del grado de dificultad de diferentes tipos de problemas aditivos. Para la resolución de problemas matemáticos, se parte de las nociones artiméticas en las que se analiza, los orígenes del conocimiento numérico, el desarrollo del conteo y la importancia del concepto parte-todo, en la que se plantea cómo se adquieren y qué desarrollo siguen estos contenidos aritméticos básicos. Se hace distinción entre los que surgen desde la experiencia informal o conocimientos implícitos de los niños y los que se adquieren desde la enseñanza explícita. Las Estructuras Aditivas, donde se describen las situaciones problemáticas a las que los alumnos se enfrentan de manera informal y que se encuentran relacionadas con un tipo de estructura semántica y los diferentes modelos del proceso de resolución de problemas que se proponen. Los diferentes aspectos analizados constatan que los problemas que habitualmente aparecen en los libros de texto presentan una naturaleza altamente estereotipada en la que no es necesario poner en marcha sofisticadas estrategias que permitan llegar a la resolución. En el estudio centrado en el análisis del pensamiento del profesor a partir del estudio de las creencias y conocimientos de contenido pedagógico, los resultados llevan a considerar dos cuestiones de especial relevancia, la relación entre creencias y conocimientos con la experiencia de los profesores y la utilización de los libros de texto. Por lo que los profesores con más experiencia son los que promueven mejores estrategias de resolución de problemas y una orientación más constructivista. Los niños necesitan contextos ricos y variados de situaciones problemáticas. Se necesita contextualizar la resolución de problemas matemáticos en situaciones cotidianas del entorno del alumno. Se debe entender la resolución del problema como el auténtico eje de los contenidos aritméticos y no al servicio del ejercicio de las operaciones.
Resumo:
Analizar la relación entre el autoconcepto en matemáticas, la enseñanza de las prácticas implementadas por el profesor de matemáticas en el aula y los alumnos de la escuela en matemáticas al final del tercer ciclo de la educación básica. El estudio se caracteriza por ser exploratorio en el entorno escolar. La muestra comprende 285 estudiantes en el noveno año de educación del tercer ciclo de la educación básica, en dos escuelas públicas en el distrito de Oporto, de situación urbana y rural. Las variables del estudio, se dividen en dependientes e independientes. Las variables dependientes se definen en: autoconcepto en matemáticas y rendimiento académico. En las variables independientes se destacan: género, nivel socio-económico y geográfico de residencia. Los instrumentos para el estudio son variados. Se parte del análisis de bases de datos, revistas diversas, artículos, informes y otros documentos políticos, bibliotecas y hemerotecas. Sirviendo de ayuda para la elaboración de los instrumentos específicos de aplicación en los sujetos: cuestionario de caracterización socio-demográfica, cuestionario de rendimiento escolar, cuestionario de prácticas lectivas implementadas en el aula y escala de autoconocimiento de las matemáticas. Todos los datos obtenidos son analizados mediante el programa estadístico SPSS. Los profesores de matemáticas, deben reflexionar sobre la necesidad de un cambio de postura y acción, que puede desencadenar una mejora significativa en el conocimiento que sus alumnos adquieren en matemáticas. La enseñanza de las matemáticas, debe ser lo suficiente estimulante y compensadora para que los estudiantes deseen seguir utilizándolas durante toda la vida.