991 resultados para materials science
Resumo:
This paper presents a study of the pozzolanic reaction kinetics between calcium hydroxide and a mixture of sugar cane bagasse with 20 and 30% of clay, burned at 800 and 1000 degrees C (SCBCA) by electrical conductivity measurements. A kinetic-diffusive model produced in previous studies by some of the authors was used. The model was fitted to the experimental data, which allowed the computation of the kinetic parameters of the pozzolanic reaction (reaction rate constant and free energy of activation) that rigorously characterised the pozzolanic activity of the materials. The results show that SCBCA demonstrated reactivity and good pozzolanic qualities in the range 800-1000 degrees C.
Resumo:
The current trend toward minimal-invasive dentistry has introduced innovative techniques for cavity preparation. Chemical vapor deposition (CVD) and laser-irradiation technology have been employed as an alternative to the common use of regular burs in high-speed turbines. Objectives. The purpose of this study was to assess the influence of alternative techniques for cavity preparation on the bonding effectiveness of different adhesives to dentin, and to evaluate the morphological characteristics of dentin prepared with those techniques. Methods. One etch&rinse adhesive (OptiBond FL, Kerr) and three self-etch systems (Adper Prompt L-Pop, 3M ESPE; Clearfil SE Bond, Kuraray; Clearfil S3 Bond, Kuraray) were applied on dentin prepared with a regular bur in a turbine, with a CVD bur in a turbine, with a CVD tip in ultrasound and with an ErCr:YSGG laser. The micro-tensile bond strength (mu TBS) was determined after storage in water for 24 h at 37 degrees C, and morphological evaluation was performed by means of field -emission -gun scanning electron microscopy (Feg-SEM). Results. Feg-SEM evaluation revealed different morphological features on the dentin surface after the usage of both the conventional and alternative techniques for cavity preparation, more specifically regarding smear-layer thickness and surface roughness. CVD bur-cut, CVD ultra-sonoabraded and laser-irradiated dentin resulted in lower mu TBSs than conventionally bur-cut dentin, irrespective of the adhesive employed. Significance. The techniques, such as CVD diamond-bur cutting, CVD diamond ultra-sonoabrasion and laser-irradiation, used for cavity preparation may affect the bonding effectiveness of adhesives to dentin, irrespective of their acidity or approach. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Microwave techniques were applied to the study of dielectric properties of phosphate glasses on the basis of contributions from permanent and induced dipolar polarization of local structural units interacting with the electrical component of the electromagnetic radiation. The dielectric constant of the selected glass system (100-x)(50P(2)O(5)center dot 25Li(2)O center dot 25Na(2)O)center dot xFe(2)O(3), where 0 <= x <= 21 is in mol%, was measured using a microwave setup assembled to measure the phase shift of the standing wave pattern produced by the insertion of the sample. It is shown that the Fe2+ ions contribute effectively to the dielectric constant, as expected from the interactions of the dipoles of the local charge compensation pairs with the microwave radiation. However, there is the possibility of occurrence of some ions Fe3+, in general, at low iron content, which reinforces the glass structure and, therefore, decreases the dielectric constant. There is a gradual conversion from Fe3+ to Fe2+ as the iron ions increases. This is possibly the reason of the anomaly in the dielectric constant values observed in the results. These assumptions can be checked by results of electronic paramagnetic resonance (EPR) and optical absorption (OA). The dielectric constant of the glasses studied in this work was found to increase with the temperature in the range of 25-330 degrees C. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
There is an increasing interest in lipid nanoparticles because of their suitability for several administration routes. Thus, it becomes even more relevant the physicochemical characterization of lipid materials with respect to their polymorphism, lipid miscibility and stability, as well as the assessment of the effect of surfactant on the type and structure of these nanoparticles. This work focuses on the physicochemical characterization of lipid matrices composed of pure stearic acid or of mixtures of stearic acid-capric/caprylic triglycerides, for drug delivery. The lipids were analyzed by Differential Scanning Calorimetry (DSC), Wide Angle X-ray Diffraction (WAXD), Polarized Light Microscopy (PLM) and hydrophilic-lipophilic balance (HLB) in combination with selected surfactants to determine the best solid-to-liquid ratio. Based on the results obtained by DSC and WAXD, the selected qualitative and quantitative composition contributed for the production of stable nanoparticles, since the melting and the tempering processes provided important information on the thermodynamic stability of solid lipid matrices. The best HLB value obtained for stearic acid-capric/caprylic triglycerides was 13.8, achieved after combining these lipids with accepted surfactants (trioleate sorbitan and polysorbate 80 in the ratio of 10:90). The proposed combinations were shown useful to obtain a stable emulsion to be used as intermediate form for the production of lipid nanoparticles. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The objective of this work was to analyze mechanical, physical and thermal performance of roofing tiles produced with several formulations of cement-based matrices reinforced with sisal and eucalyptus fibers. The physical properties of the tiles were more influenced by the fiber content of the composite than by the type of reinforcement. The type of the fiber was the main variable for the achievement of the best results of mechanical properties. Exposure to tropical climate has caused a severe reduction in the mechanical properties of the composites. After approximately four months of age under external weathering the toughness of the vegetable fiber-cement fell to 53-68% of the initial toughness at 28 days of age. The thermal performance showed that roofing tiles reinforced with vegetable fiber are acceptable as substitutes of asbestos-cement sheets. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This study presents the in-vivo evaluation of Ti-13Nb-13Zr alloy implants obtained by the hydride route via powder metallurgy. The cylindrical implants were processed at different sintering and holding times. The implants` were characterized for density, microstructure (SEM), crystalline phases (XRD), and bulk (EDS) and surface composition (XPS). The implants were then sterilized and surgically placed in the central region of the rabbit`s tibiae. Two double fluorescent markers were applied at 2 and 3 weeks, and 6 and 7 weeks after implantation. After an 8-week healing period, the implants were retrieved, non-decalcified section processed, and evaluated by electron, UV light (fluorescent labeling), and light microscopy (toluidine blue). BSE-SEM showed close contact between bone and implants. Fluorescent labeling assessment showed high bone activity levels at regions close to the implant surface. Toluidine blue staining revealed regions comprising osteoblasts at regions of newly forming/formed bone close to the implant surface. The results obtained in this study support biocompatible and osseoconductive properties of Ti-13Nb-13Zr processed through the hydride powder route. (c) 2007 Published by Elsevier B.V.
Resumo:
Magnetic nanoparticles surface-functionalized with meso-2,3-dimercaptosuccinic acid (MNPs-DMSA) constitute an innovative and promising approach for tissue- and cell-targeted delivery of therapeutic drugs in the lung. Transendothelial migration of leukocytes in the lung is a side effect of endovenous administration of MNPs-DMSA. Using cytologic and phenotypic analysis of murine bronchoalveolar lavage cells, we identified monocytes/macrophages as the main subpopulation of leukocytes involved in this process. Moreover, ultrastructural analysis revealed the presence of nanoparticles inside of numerous macrophages from bronchoalveolar lavage. MNPs-DMSA at concentrations as high as 1 X 10(15) nanoparticles/mL had no toxic effects on macrophages, as evidenced by 3-(4, 5-dimethylthiazolyi-2)-2,5-diphenyltetrazolium bromide (MTT) assay. Notably, MNPs-DMSA up-regulated the mRNA expression of E, L- and P-selectin and macrophage-1 antigen in the murine lung. Upregulation of these cell adhesion molecules was associated with an increased concentration of tumor necrosis factor-alpha in lung. Finally, the critical relevance of the beta(2) integrin-dependent pathway in leukocyte transmigration elicited by MNPs-DMSA was demonstrated by use of knockout mice. Our results characterize mechanisms of the pro-inflammatory effects of MNPs-DMSA in the lung, and identify beta(2) integrin-targeted interventions as promising strategies to reduce pulmonary side effects of MNPs-DMSA during biomedical applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We studied the expression pattern of cell adhesion molecules associated to transendothelial migration of leukocytes in different lung`s vascular compartments after administration of a magnetic fluid sample containing maghemite nanoparticles surface-coated with meso-2,3-dimercaptosuccinic acid. The analyses were conducted in mice 4 and 12 h after endovenous administration of the magnetic fluid in control mice. Firstly, the migratory activity of leukocytes after magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration was confirmed using broncho-alveolar lavage and light microscopy. Then, the expression of cell adhesion molecules in the lung`s vascular compartments was investigated by immunofluorescence microscopy of frozen sections, using antibodies against L-selectin, P-selectin, E-selectin, macrophage antigen-1, and leukocyte function associated antigen-1. L- and P-selectin showed similar pattern of expression in the pulmonary vasculature in animals treated with magnetic fluid and in the control group. In contrast, macrophage antigen-1 and leukocyte function associated antigen-1 were found in capillary only in animals treated with magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration. In addition, after magnetic fluid administration E-selectin was found in post-capillary sites. Our findings demonstrated that magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration exhibits modulation effects on expression patterns of E-selectin, macrophage antigen-1, and leukocyte function associated antigen-1 in the lung`s vascular compartments. These findings are very important in a strategy to reduce the potential toxicity of magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration for medical applications.
Resumo:
Poly(3-hydroxybutyrate) was produced in fed-batch cultures of Ralstonia eutropha DSM 428 and Alcaligenes latus ATCC 29712 on a mineral medium with different carbon sources such as sucrose, sodium lactate, lactic acid, soybean oil and fatty acid. The bacteria converted the different carbon sources supplied into P3HB. The best results were obtained when lactate or soybean oil were supplied as the sole carbon source. The range of number average molar mass (Mn) for the polymers, analyzed by Gel Permeation Chromatography was 1.65 to 0.79 x 10(5) g mol(-1). FTIR spectroscopy revealed a characteristic absorbance associated with polyester structures. The crystallinity degree, determinate from X-ray diffractograms, was about 69% in all synthesized polymers. The thermal properties associated to semicrystalline polymers indicated a glass transition at 0.1 degrees C and a melting point at about 175 degrees C and enthalpy of 63-89 J g(-1). The (1)H-NMR and (13)C-NMR spectra of the polymers were in agreement with the calculated chemical shifts associated with P3HB structures.
Resumo:
Silicon nitride has demonstrated to be a potential candidate for clinical applications because it is a non-cytotoxic material and has satisfactory fracture toughness, high wear resistance and low friction coefficient. In this paper, samples of silicon nitride, which were kept into rabbits` tibias for 8 weeks, and the adjacentbone tissue were analysed by scanning electron microscopy in order to verify the bone growth around the implants and the interaction between the implant and the bone. Bone growth occurred mainly in the cortical areas, although it has been observed that the newly bone tends to grow toward the marrow cavity. Differences were observed between the implants installed into distal and proximal regions. In the first region, where the distance between the implant and the cortical bone is greater than in the proximal region, the osteoconduction process was evidenced by the presence of a bridge bone formation toward the implant surface. The results showed that silicon nitride can be used as biomaterial since the newly bone grew around the implants. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The chemical and dimensional stability associated with suitable fracture toughness and propitious tribological characteristics make silicon nitride-based ceramics potential candidates for biomedical applications, mainly as orthopedic implants. Considering this combination of properties, silicon nitride components were investigated in relation to their biocompatibility. For this study, two cylindrical implants were installed in each tibia of five rabbits and were kept in the animals for 8 weeks. During the healing time, tissue tracers were administrated in the animals so as to evaluate the bone growth around the implants. Eight weeks after the surgery, the animals were euthanized and histological analyses were performed. No adverse reactions were observed close to the implant. The osteogenesis process occurred during the entire period defined by the tracers. However, this process occurred more intensely 4 weeks after the surgery. In addition, the histological analyses showed that bone growth occurred preferentially in the cortical areas. Different kinds of tissue were identified on the implant surface, characterized by lamellar bone tissue containing osteocytes and osteons, by a noncalcified matrix containing osteoblasts, or by the presence of collagen III, which may change to collagen I or remain as a fibrous tissue. The results demonstrated that silicon nitride obtained according to the procedure proposed in this research is a biocompatible material. (c) 2007 Wiley Periodicals, Inc.
Resumo:
The fluid flow of the liquid phase in the sol-gel-dip-coating process for SnO(2) thin film deposition is numerically simulated. This calculation yields useful information on the velocity distribution close to the substrate, where the film is deposited. The fluid modeling is done by assuming Newtonian behavior, since the linear relation between shear stress and velocity gradient is observed. Besides, very low viscosities are used. The fluid governing equations are the Navier-Stokes in the two dimensional form, discretized by the finite difference technique. Results of optical transmittance and X-ray diffraction on films obtained from colloidal suspensions with regular viscosity, confirm the substrate base as the thickest part of the film, as inferred from the numerical simulation. In addition, as the viscosity increases, the fluid acquires more uniform velocity distribution close to the substrate, leading to more homogenous and uniform films.
Resumo:
In this work, 1 wt % Pd/ZrO(2)-CeO(2) mixed oxide nanotubes with 90 mol % CeO(2) were synthesized following a very simple, high-yield procedure and their properties were characterized by synchrotron radiation X-ray diffraction, X-ray absorption near-edge spectroscopy (XANES), and scanning and high-resolution transmission electron microscopy (SEM and HRTEM). In situ XANES experiments were carried out under reducing conditions to investigate the reduction behavior of these novel nanotube materials. The Pd/CeO(2)-based nanotubes exhibited the cubic phase (Fm3m space group). The nanotube walls were composed of nanoparticles with an average crystallite size of about 7 nm, and the nanotubes exhibited a large specific surface area (85 m(2).g(-1)). SEM and HRTEM studies showed that individual nanotubes were composed of a curved sheet of these nanoparticles. Elemental analysis showed that the Ce:Zr:Pd ratios appeared to be approximately constant across space, suggesting compositional homogeneity in the samples. XANES results indicated that the extent of reduction of these materials is low and that the Ce(4+) state is in the majority over the reduced Ce(3+) state. The results suggest that Pd cations-most likely Pd(2+)-form a Pd-Ce-Zr oxide solid solution and that the Pd(2+) is stabilized against reduction in this phase. However, incorporation of the Pd (1 wt %) into the crystal lattice of the nanotubes also appeared to destabilize Ce(4+) against reduction to Ce(3+) and caused a significant increase in its reducibility.
Synthesis, characterization and catalytic evaluation of cubic ordered mesoporous iron-silicon oxides
Resumo:
Iron was successfully incorporated in FDU-1 type cubic ordered mesoporous silica by a simple direct synthesis route. The (Fe/FDU-1) samples were characterized by Rutherford back-scattering spectrometry (RBS), small angle X-ray scattering (SAXS). N(2) sorption isotherm, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The resulting material presented an iron content of about 5%. Prepared at the usual acid pH of -0.3, the composite was mostly formed by amorphous silica and hematite with a quantity of Fe(2+) present in the structure. The samples prepared with adjusted pH values (2 and 3.5) were amorphous. The samples` average pore diameter was around 12.0 nm and BET specific surface area was of 680 m(2) g(-1). Although the iron-incorporated material presented larger lattice parameter, about 25 nm compared to pure FDU-1, the Fe/FDU-1 composite still maintained its cubic ordered fcc mesoporous structure before and after the template removal at 540 degrees C. The catalytic performance of Fe/FDU-1 was investigated in the catalytic oxidation of Black Remazol B dye using a catalytic ozonation process. The results indicated that Fe/FDU-1 prepared at the usual acid pH exhibited high catalytic activity in the mineralization of this pollutant when compared to the pure FDU-1. Fe(2)O(3) and Fe/FDU-1 prepared with higher pH of 2 and 3.5. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Nanostrucured europium oxide and hydroxide films were obtained by pulsed Nd:YAG (532 nm) laser ablation of a europium metallic target, in the presence of a 1 mbar helium buffer atmosphere. Both the produced film and the ambient plasma were characterized. The plasma was monitored by an electrostatic probe, for plume expansion in vacuum or in the presence of the buffer atmosphere. The time evolution of the ion saturation current was obtained for several probe to substrate distances. The results show the splitting of the plume into two velocity groups, being the lower velocity profile associated with metal cluster formation within the plume. The films were obtained in the presence of helium atmosphere, for several target-to-substrate distances. They were analyzed by Rutherford backscattering spectrometry, x-ray diffraction, and atomic force microscopy, for as-deposited and 600 degrees C treated-in-air samples. The results show that the as-deposited samples are amorphous and have chemical composition compatible with europium hydroxide. The thermally treated samples show x-ray diffraction peaks of Eu(2)O(3), with chemical composition showing excess oxygen. Film nanostructuring was shown to be strongly correlated with cluster formation, as shown by velocity splitting in probe current versus time plots. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3457784]