1000 resultados para chlorophyll formation
Resumo:
Carbon ions were implanted into crystal Si to a concentration of (0.6-1.5)at% at room temperature. Some samples were pre-irradiated with S-29(i)+ ions, while others were not pre-irradiated. Then the two kinds of samples were implanted with C-12(+) ions simultaneously, and Si1-xCx alloys were grown by solid phase epitaxy with high-temperature annealing. The effects of preirradiation on the formation of Si1-xCx alloys were studied. If the dose of implanted C ion was less than that for amorphizing Si crystals, the implanted C atoms would like to combine with defects produced during implantation, and then it was difficult for Si1-xCx alloys to form after annealine, at 950 degreesC. Pre-irradiation was advantageous for Si1-xCx alloy formation. With the increase of C ion dose, the damage produced by C ions increased. Pre-irradiation was unfavorable for Si1-xCx, alloy formation. If the implanted C concentration was higher than that for solid phase epitaxy solution, only part of the implanted C atoms form Si1-xCx alloys and the effects of pre-irradiation could be neglected. As the annealing temperature was increased to 1050 degreesC, Si1-xCx alloys in both pre-irradiated and unpreirradiated samples of low C concentration remained, whereas most part of Si1-xCx alloys in samples with high C concentration vanished.
Resumo:
Si1-xCx alloys of carbon (C) concentration between 0.6%-1.0% were grown in Si by ion implantation and high temperature annealing. The formation of Si1-xCx alloys under different ion doses and their stability during annealing were studied. If the implanted dose was less than that for amorphizing Si crystals, the implanted C atoms would like to combine with defects produced during implantation and it was difficult to form Si1-xCx alloys after being annealed at 850 degreesC. With the increment of implanted C ion doses, the lattice damage increased and it was easier to form Si1-xCx alloys. But the lattice strain would become saturate and only part of implanted carbon atoms would occupy the substitutional positions to form Si1-xCx alloys as the implanted carbon dose increased to a certain degree. Once Si1-xCx alloys were formed, they were stable at 950 degreesC, but part of their strain would release as the annealing temperature increased to 1 000 degreesC. Stability of the alloys became worse with the increment of carbon concentration in the alloys.
Resumo:
Carbon ions with concentration of (0.6-1.5)% were implanted into silicon crystals at room temperature and Si1-xCx alloys were grown by solid phase epitaxy with high temperature annealing. The formation and characteristics of Si1-xCx alloys under different implanted carbon doses were studied. If the implanted carbon atom concentration was less than 0.6%, carbon atoms would tend to combine with the defects produced during implantation and it was difficult for Si1-xCx alloys to form during annealing at 850-950 degreesC. With the increase of implanted C concentration, almost all implanted carbon atoms would occupy substitution positions to form Si1-xCx alloys, but only part of implanted carbon atoms would occupy the substitution position to form Si1-xCx alloys as the implanted dose increased to 1.5 %. Most Si1-xCx alloy phases would vanish as the annealing temperature was increased higher.
Resumo:
InAs self-organized quantum dots (QDs) grown on annealed low-temperature GaAs (LT-GaAs) epi-layers and on normal temperature GaAs buffer layers have been compared by transmission electron microscopy (TEM) and photoluminescence (PL) measurements. TEM evidences that self-organized QDs were formed with a smaller size and larger density than that on normal GaAs buffer layers. It is discussed that local tensile surface strain regions that are preferred sites for InAs islands nucleation are increased in the case of the LT-GaAs buffer layers due to exhibiting As precipitates. The PL spectra show a blue-shifted peak energy with narrower linewidth revealing the improvement of optical properties of the QDs grown on LT-GaAs epi-layers. It suggests us a new way to improve the uniformity and change the energy band structure of the InAs self-organized QDs by carefully controlling the surface stress states of the LT-GaAs buffers on which the QDs are formed. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We have observed the transition from static to dynamic electric field domain formation induced by a transverse magnetic field and the sample temperature in a doped GaAs/AlAs superlattice. The observations can be very well explained by a general analysis of instabilities and oscillations of the sequential tunnelling current in superlattices based solely on the magnitude of the negative differential resistance region in the tunnelling characteristic of a single barrier. Both increasing magnetic field and sample temperature change the negative differential resistance and cause the transition between static and dynamic electric field domain formation. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A constant amount of Ge was deposited on strained GexSi1-x layers of approximately the same thickness but with different alloy compositions, ranging from x = 0.06 to x = 0.19. From their atomic-force-microscopy images, we found that both the size and density of Ge islands increased with the Ge composition of the strained layer. By conservation of mass, this implies that these islands must incorporate material from the underlying strained layer. (C) 2000 American Institute of Physics. [S0003-6951(00)03529-4].
Resumo:
A new alternative method to grow the relaxed Ge0.24Si0.76 layer with a reduced dislocation density by ultrahigh vacuum chemical vapor deposition is reported in this paper. A 1000-Angstrom Ge0.24Si0.76 layer was first grown on a Si(100) substrate. Then a 500-Angstrom Si layer and a subsequent 5000-Angstrom Ge0.24Si0.76 overlayer followed. All these three layers were grown at 600 degrees C. After being removed from the growth system to air, the sample was first annealed at 850 degrees C for 30 min, and then was investigated by cross-sectional transmission electron microscopy and Rutherford backscattering spectroscopy. It is shown that the 5000-Angstrom Ge0.24Si0.76 thick over layer is perfect, and most of the threading dislocations are located in the embedded thin Si layer and the lower 1000-Angstrom Ge0.24Si0.76 layer. The relaxation ratio of the over layer is deduced to be 0.8 from Raman spectroscopy.
Resumo:
A dynamic dc voltage band was found emerging from each sawtooth-like branch of the current-voltage characteristics of a doped GaAs/AlAs superlattice in the transition process from static to dynamic electric-field domain formation caused by increasing the sample temperature. As the temperature increases, these dynamic dc voltage bands expand within each sawtooth-like branch, squeeze out the static regions, and join up together to turn the whole plateau into dynamic electric-field domain formation. These results are well explained by a general analysis of stability of the sequential tunneling current in superlattices. (C) 1999 American Institute of Physics. [S0003-6951(99)04443-5].
Resumo:
Hydrostatic pressure measurements are used to investigate the formation mechanism of electric field domains in doped weakly-coupled GaAs/AlAs superlattices. For the first plateau-like region in the I-V curve, two kinds of sequential resonant tunnelling are observed. For P<2 kbar the high-field domain is formed by the Gamma-Gamma process, while for P>2 kbar the high-field domain is formed by the T-X process. For the second plateau-libe region, the high-field domain is attributed to Gamma-X sequential resonant tunnelling. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Fe-N films containing the Fe16N2 phase were prepared in a high-vacuum system of ion-beam-assisted deposition (IBAD). The composition and structure of the films were analysed by Auger electron spectroscopy (AES) and X-ray diffraction (XRD), respectively. Magnetic properties of the films were measured by a vibrating sample magnetometer (VSM). The phase composition of Fe-N films depend sensitively on the N/Fe atomic arrival ratio and the deposition temperature. An Fe16N2 film was deposited successfully on a GaAs (1 0 0) substrate by IBAD at a N/Fe atomic arrival ratio of 0.12. The gram-saturation magnetic moment of the Fe16N2 film obtained is 237 emu/g at room temperature, the possible cause has been analysed and discussed. Hysteresis loops of Fe16N2 have been measured, the coercive force H-c is about 120 Oe, which is much larger than the value for Fe, this means the Fe16N2 sample exhibits a large uniaxial magnetocrystalline anisotropy. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
CdS clusters are formed in the pores of a mesoporous zeolite in which the size of the clusters may be adjusted. The size of the clusters increases as the CdS loading is increased. X-ray diffraction investigation shows that the lattice constants of the clusters contract upon increasing size. This contraction is attributed to an increase of the static pressure exercised by the zeolite framework as the clusters grow bigger. Both the excitonic and trapped emission bands are detected and become more intensive upon decreasing size. Three absorption bands appear in the photoluminescence excitation (PLE) spectra and they shift to the blue as cluster size decreases. Based on the effective-mass approximation, the three bands are assigned to the 1S-1S, 1S-1P and 1S-1D transitions, respectively. The size-dependence of the PLE spectra can also be explained. (C) 1997 Elsevier Science Ltd.
Resumo:
Fe-doped semi-insulating (SI) InP has become semi-conducting (SC) material completely after annealing at 900 V for 10 hours. Defects in the SC and SI InP materials have been studied by deep level transient spectroscopy (DLTS) and thermally stimulated current spectroscopy (TSC) respectively. The DLTS only detected Fe acceptor related deep level defect with significant concentration, suggesting the formation of a high concentration of shallow donor in the SC-InP TSC results confirmed the nonexistence of deep level defects in the annealed SI-InP. The results demonstrate a significant influence of the thermally induced defects on the electrical properties of SI-InP. The formation mechanism and the nature of the shallow donor defect have been discussed based on the results.
Resumo:
Post-growth annealing was carried out on ZnO thin films grown by metal-organic chemical vapor deposition (MOCVD). The grain size of ZnO thin film increases monotonically with annealing temperature. The ZnO thin films were preferential to c-axis oriented after annealing as confirmed by Xray diffraction (XRD) measurements. Fourier transformation infrared transmission measurements showed that ZnO films grown at low temperature contains CO2 molecules after post-growth annealing. A two-step reaction process has been proposed to explain the formation mechanism of CO2, which indicates the possible chemical reaction processes during the metal-organic chemical vapor deposition of ZnO films.
Resumo:
High quality silicon nanowires (SiNWs) were grown directly from n-(111) silicon single crystal substrate by using Au film as a metallic catalyst. The diameter and length of the formed nanowires are 30-60 nm and from several micrometers to sereral tens of micrometers, respectively. The effects of Au film thickness, annealing temperature, growth time and N-2 gas flow rate on the formation of the nanowires were experimentally investigated. The results confirmed that the silicon nanowires with controlled diameter, length, shape and orientation can be obtained via reasonably choosing and optimizing various technical conditions. The formation process of the silicon nanowires is analyzed qualitatively based on solid-liquid-solid growth mechanism.