1000 resultados para cão
Resumo:
通过对94.5 Mev ~(14)N+~(59)Co反应数据的处理,得到了Li-Ne产物出射的wilczynski图、角分布、电荷分布,并对它们做了一些常规的分析工作。在Feldmeier模型框架下对该系统作了经典轨道动力学计算,给出了计算结果并对它们做了说明。本工作为轻系统低轰击能量下周边碰撞的系统性研究提供了一些参考数据
Resumo:
An efficient method for the catalytic reduction of aromatic nitro compounds to the corresponding aromatic amines is reported. In the presence of selenium as a catalyst, the aromatic nitro compounds are quantitively reduced by CO/H2O to form the corresponding amines under atmospheric pressure. The reduction occurs in high selectivity regardless of other reducible functionalities present on the aromatic ring. There exists a phase transfer process of the catalyst selenium in the reaction. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
It is indispensable to remove CO at the level of less than 50ppm in H-2-rich feed gas for the proton exchange membrane (PEM) fuel cells. In this paper, catalyst with high activity and selectivity, and a microchannel reactor for CO preferential oxidation (PROX) have been developed. The results indicated that potassium on supported Rh metal catalysts had a promoting effect in the CO selective catalytic oxidation under H-2-rich stream, and microchannel reactor has an excellent ability to use in on-board hydrogen generation system. CO conversion keeps at high levels even at a very high GHSV as 500 000 h(-1), so, miniaturization of hydrogen generation system can be achieved by using the microchannel reactor. (C) 2004 Elsevier B.V. All rights reserved.
Probing into the catalytic nature of Co/sulfated zirconia for selective reduction of NO with methane
Resumo:
In this work, the structural and surface properties of Co-loaded sulfated zirconia (SZ) catalysts were studied by X-ray diffraction (XRD), N-2 adsorption, NH3-TPD, FT-IR spectroscopy, H-2-TPR, UV-vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and NO-TPD. NH3-TPD and FT-IR spectra results of the catalysts showed that the sulfation process of the support resulted in the generation of strong Bronsted and Lewis acid sites, which is essential for the SCR of NO with methane. On the other hand, the N-2 adsorption, H-2-TPR, UV/vis DRS, and XPS of the catalysts demonstrated that the presence of the SO42- species promoted the dispersion of the Co species and prevented the formation Of Co3O4. Such an increased dispersion of Co species suppressed the combustion reaction of CH4 by O-2 and increased the selectivity toward NO reduction. The NO-TPD proved that the loading of Co increased the adsorption of NO over SZ catalysts, which is another reason for the promoting effect of Co. (C) 2004 Elsevier Inc. All rights reserved.