982 resultados para airway pressure
Resumo:
The current-voltage (I-V) characteristics of a doped weakly coupled GaAs/AlAs superlattice (SL) with narrow barriers are measured under hydrostatic pressure from 1 bar to 13.5 kbar at both 77 and 300 K. The experimental results show that, contrary to the results in SL with wide barriers, the plateau in the I-V curve at 77 K does not shrink with increasing pressure, and becomes wider after 10.5 kbar. It is explained by the fact that the E-Gamma 1-E-Gamma 1 resonance peak is higher than the E-Gamma 1-E-X1 resonance peak. At 300 K, however, because of the more important contribution of the nonresonant component to the current, the plateau shrinks with increasing pressure. (C) 1999 American Institute of Physics. [S0021-8979(99)02008-3].
Resumo:
The behavior of room temperature self-sustained current oscillations resulting from sequential resonance tunneling in a doped weakly-coupled GaAs/AlAs superlattice (SL) is investigated under hydrostatic pressure. From atmosphere pressure to 6.5 kbar, oscillations exist in the whole plateau of the I-V curve and oscillating characteristics are affected by the pressure. When hydrostatic pressure is higher than 6.5 kbar, the current oscillations are completely suppressed although a current plateau still can be seen in the I-V curve. The plateau disappears when the pressure is close to 13.5 kbar. As the main effect of hydrostatic pressure is to lower the X point valley with respect to Gamma point valley, the disappearance of oscillation and the plateau shrinkage before Gamma - X resonance takes place are attributed to the increases of thermoionic emission and nonresonant tunneling components determined by the lowest Gamma - X barrier height in GaAs/AlAs SL structure.
Resumo:
We have measured photoluminescence of ZnSxTe1-x alloys (x > 0.7) at 300 K and under hydrostatic pressure up to 7 GPa. The spectra contain only a broad emission band under excitation of the 406.7 nm line. Its pressure coefficients are 47, 62 and 45 meV/GPa for x = 0.98, 0.92 and 0.79 samples, which are about 26%, 7% and 38% smaller than that of the band gap in the corresponding alloys. The Stokes shifts between emission and absorption of the bands were calculated by fitting the pressure dependence of the emission intensity, being 0.29, 0.48 and 0.13 eV for the three samples, respectively. The small pressure coefficient and large Stokes shift indicate that the emission band observed in our samples may correspond to the Te isoelectronic center in the ZnSxTe1-x alloy.
Resumo:
We have investigated the dependence on hydrostatic pressure of the photoluminescence of an InAs submonolayer embedded in a GaAs matrix at 15 K and for pressure up to 8 GPa. Strong InAs-related emissions are observed in all three samples at ambient pressure. The temperature dependence of the emission intensity for these Peaks can be well characterized by the thermal activation of excitons from the InAs layer to the GaAs matrix. With increasing pressure, the InAs-related peaks shift to. higher energies. The pressure coefficients of these peaks are very close to that of the free exciton in bulk GaAs. Some weak peaks observed at pressures above 4.2 GPa are attributed to indirect transitions involving X states in the InAs layer. These results are similar to the pressure behaviour observed in the InAs/GaAs monolayer structures. A group of new lines has been observed in the spectra when pressure is increased beyond 2.5 GPa, which is attributed to the N isoelectronic traps in the GaAs matrix.
Resumo:
Cubic GaN films were grown on GaAs(1 0 0) substrates by low-pressure metalorganic vapor-phase epitaxy at high temperature. We have found a nonlinear relation between GaN film thickness and growth timer and this nonlinearity becomes more obvious with increasing growth temperature. We assumed it was because of Ga diffusion through the GaN film, and developed a model which agrees well with the experimental results. These results raise questions concerning the role of Ga diffusion through the GaN film, which may affect the electrical and optical properties of the material. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get high quality 4H-SiC epilayers. Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates purchased from Cree is performed at a typical temperature of 1500 degrees C with a pressure of 40 Torr by using SiH4+C2H4+H-2 gas system. The surface morphologies and structural and optical properties of 4H-SiC epilayers are characterized with Nomarski optical microscope, atomic force microscopy (AFM), x-ray diffraction, Raman scattering, and low temperature photoluminescence (LTPL). The background doping of 32 pm-thick sample has been reduced to 2-5 x 10(15) cm(-3). The FWHM of the rocking curve is 9-16 arcsec. Intentional N-doped and B-doped 4H-SiC epilayers are obtained by in-situ doping of NH3 and B2H6, respectively. Schottky barrier diodes with reverse blocking voltage of over 1000 V are achieved preliminarily.
Resumo:
Pressure sensitivity of the fiber optic mandrel hydrophone is analyzed in this paper. Based on the theory of elasticity, the mechanism of the pressure response is studied. The influence of the optical fiber on the compliant mandrel on the pressure response is taken into consideration for the first time. The radial deformation of the mandrel under the pressure of the fiber optic and the underwater pressure is analyzed in details. Based on the theory of photo-elasticity, the phase shift of the Mach-Zehnder interferometer is given. The pressure sensitivity is evaluated both theoretically and experimentally, and the results show a good correlation between the theoretical and experimental results.