1000 resultados para X-ray diffractometry
Resumo:
It is believed that eta Carinae is actually a massive binary system, with the wind-wind interaction responsible for the strong X-ray emission. Although the overall shape of the X-ray light curve can be explained by the high eccentricity of the binary orbit, other features like the asymmetry near periastron passage and the short quasi-periodic oscillations seen at those epochs have not yet been accounted for. In this paper we explain these features assuming that the rotation axis of eta Carinae is not perpendicular to the orbital plane of the binary system. As a consequence, the companion star will face eta Carinae on the orbital plane at different latitudes for different orbital phases and, since both the mass-loss rate and the wind velocity are latitude dependent, they would produce the observed asymmetries in the X-ray flux. We were able to reproduce the main features of the X-ray light curve assuming that the rotation axis of eta Carinae forms an angle of 29 degrees +/- 4 degrees with the axis of the binary orbit. We also explained the short quasi-periodic oscillations by assuming nutation of the rotation axis, with an amplitude of about 5 degrees and a period of about 22 days. The nutation parameters, as well as the precession of the apsis, with a period of about 274 years, are consistent with what is expected from the torques induced by the companion star.
Resumo:
Optimized experimental conditions for extracting accurate information at subpixel length scales from analyzer-based X-ray imaging were obtained and applied to investigate bone regeneration by means of synthetic beta-TCP grafting materials in a rat calvaria model. The results showed a 30% growth in the particulate size due to bone ongrowth/ingrowth within the critical size defect over a 1-month healing period.
Resumo:
Primary beam spectra were obtained for an X-ray industrial equipment (40-150 kV), and for a clinical mammography apparatus (25-35 kV) from beams scattered at angles close to 90 degrees, measured with a CdTe Compton spectrometer. Actual scattering angles were determined from the Compton energy shift of characteristic X-rays or spectra end-point energy. Evaluated contribution of coherent scattering amounts to more than 15% of fluence in mammographic beams. This technique can be used in clinical environments. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 angstrom(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.
Resumo:
Thin zirconium nitride films were prepared on Si(l 00) substrates at room temperature by ion beam assisted deposition with a 2 keV nitrogen ion beam. Arrival rate ratios ARR(N/Zr) used were 0.19, 0.39, 0.92, and 1.86. The chemical composition and bonding structure of the films were analyzed with X-ray photoelectron spectroscopy (XPS). Deconvolution results for Zr 3d, Zr 3p(3/2), N 1s, O 1s, and C 1s XPS spectra indicated self-consistently the presence of metal Zr-0, nitride ZrN, oxide ZrO2, oxymnide Zr2N2O, and carbide ZrC phases, and the amounts of these compounds were influenced by ARR(N/Zr). The chemical composition ratio N/Zr in the film increased with increasing ARR(N/Zr) until ARR(N/Zr) reached 0.92, reflecting the high reactivity of nitrogen in the ion beam, and stayed almost constant for ARR(N/Zr) >= 1, the excess nitrogen being rejected from the growing film. A considerable incorporation of contaminant oxygen and carbon into the depositing film was attributed to the getter effect of zirconium. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work we use magnetic resonant x-ray diffraction to study the magnetic properties of a 1.5 mu m EuTe film and an EuTe/PbTe superlattice (SL). The samples were grown by molecular beam epitaxy on (111) oriented BaF(2) substrates. The measurements were made at the Eu L(2) absorption edge, taking profit of the resonant enhancement of more than two orders in the magnetically diffracted intensity. At resonance, high counting rates above 11000 cps were obtained for the 1.5 gm EuTe film, allowing to check for the type II antiferromagnetic order of EuTe. An equal population of the three possible in-plane magnetic domains was found. The EuTe/PbTe SL magnetic peak showed a satellite structure, indicating the presence of magnetic correlations among the 5 ML (monolayers) EuTe layers across the 15 ML PbTe non-magnetic spacers. The temperature dependence of the integrated intensities of the film and the SL yielded different Neel temperatures T(N). The lower T(N) for the SL is explained considering the higher influence of the surface atoms, with partial bonds lost.
Resumo:
Impurity-interstitial dipoles in calcium fluoride solutions with Al3+, Yb3+ and La3+ fluorides were studied using the thermally stimulated depolarization current (TSDC) technique. The dipolar complexes are formed by substitutional trivalent ions in Ca2+ sites and interstitial fluorine in nearest neighbor sites. The relaxations observed at 150 K are assigned to dipoles nnR(S)(3+)- F-i(-) (R-S = La or Yb). The purpose of this work is to study the processes of energy storage in the fluorides following X-ray and gamma irradiation. Computer modelling techniques are used to obtain the formation energy of dipole defects. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This study presents a comparison of the X-ray transmission through microsized and nanosized materials. For this purpose CuO nanoparticles, with 13.4 nm average grain size, and CuO microparticles, with a mean particle size of 56 mu m, were incorporated separately to beeswax in a concentration of 5%. Results show that the transmission through the above material plates with microsized and nanosized CuO was almost the same for X-ray beams generated at 60 and 102 kV tube voltages. However, for the radiation beams generated at 26 and 30 kV tube voltages the X-rays are more attenuated by the nanostructured CuO plates by a factor of at least 14%. Results suggest that the difference in the low energy range may be due to the higher number of particles/gram in the plates designed with CuO nanoparticles and due to the grain size effect on the X-ray transmission. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A funerary gold mask from the Museum of Sican, Ferranafe, Peru was analyzed in 30 different areas using a portable equipment using energy-dispersive X-ray fluorescence. It was deduced from the measurements that the main sheet of the mask and the majority of the pendants have a similar composition and are made of tumbaga, which means a poor gold alloy enriched at the surface by depletion gilding, and have a similar `equivalent` gilding thickness of about 5 mu m. The nose, also on tumbaga, has different composition and a thickness of about 8 mu m. The clamps are on gilded or on silvered copper. The red pigment dispersed on the surface of the mask is cinnabar. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Aquatic macrophytes Salvinia auriculata, Pistia stratiotes and Eichhornia crassipes were chosen to investigate the Cr(VI) reduced by root-based biosorption in a chromium uptake experiment, using a high-resolution XRF technique. These plants were grown in hydroponics medium supplied with non-toxic Cr concentrations during a 27-day metal uptake experiment. The high-resolution Cr-K beta fluorescence spectra for dried root tissues and Cr reference material (100% Cr, Cr(2)O(3), and CrO(3)) were measured using an XRF spectrometer. For all species of aquatic plant treated with Cr(VI), the energy of the Cr-K beta(2,5) line was shifted around 8 eV below the same spectral line identified for the Cr(VI) reference, but it was also near to the line identified for the Cr(III) reference. Moreover, there was a lack of the strong Cr-K beta"" line assigned to the Cr(VI) reference material within the Cr(VI)-treated plant spectra, suggesting the reduction of Cr(VI) for other less toxic oxidation states of Cr. As all Cr-K beta spectra of root tissue species were compared, the peak energies and lineshape patterns of the Cr-K beta(2,5) line are coincident for the same aquatic plant species, when they were treated with Cr(III) and Cr(VI). Based on the experimental evidence, the Cr(VI) reduction process has happened during metal biosorption by these plants. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
When a multilayered material is analyzed by means of energy-dispersive X-ray fluorescence analysis, then the X-ray ratios of K alpha/K beta, or L alpha/L beta and L alpha/L gamma, for an element in the multilayered material, depend on the composition and thickness of the layer in which the element is situated, and on the composition and thickness of the superimposed layer (or layers). Multilayered samples are common in archaeometry, for example, in the case of pigment layers in paintings, or in the case of gilded or silvered alloys. The latter situation is examined in detail in the present paper, with a specific reference to pre-Columbian alloys from various museums in the north of Peru. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In order to validate the Geant4 toolkit for dosimetry applications, simulations were performed to calculate conversion coefficients h(10, alpha) from air kerma free-in-air to personal dose equivalent Hp(10, a). The simulations consisted of two parts: the production of X-rays with radiation qualities of narrow and wide spectra, and the interaction of radiation with ICRU tissue-equivalent and ISO water slab phantoms. The half-value layers of the X-ray spectra obtained by simulation were compared with experimental results. Mean energy, spectral resolution, half-value layers and conversion coefficients were compared with ISO reference values. The good agreement between results from simulation and reference data shows that the Geant4 is suitable for dosimetry applications which involve photons with energies in the range of ten to a few hundreds of keV. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We describe how the method of detection of delayed K x-rays produced by the electron capture decay of the residual nuclei can be a powerful tool in the investigation of the effect of the breakup process on the complete fusion (CF) cross-section of weakly bound nuclei at energies close to the Coulomb barrier. This is presently one of the most interesting subjects under investigation in the field of low-energy nuclear reactions, and the difficult experimental task of separating CF from the incomplete fusion (ICF) of one of the breakup fragments can be achieved by the x-ray spectrometry method. We present results for the fusion of the (9)Be + (144)Sm system. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
The protective shielding design of a mammography facility requires the knowledge of the scattered radiation by the patient and image receptor components. The shape and intensity of secondary x-ray beams depend on the kVp applied to the x-ray tube, target/filter combination, primary x-ray field size, and scattering angle. Currently, shielding calculations for mammography facilities are performed based on scatter fraction data for Mo/Mo target/filter, even though modern mammography equipment is designed with different anode/filter combinations. In this work we present scatter fraction data evaluated based on the x-ray spectra produced by a Mo/Mo, Mo/Rh and W/Rh target/filter, for 25, 30 and 35 kV tube voltages and scattering angles between 30 and 165 degrees. Three mammography phantoms were irradiated and the scattered radiation was measured with a CdZnTe detector. The primary x-ray spectra were computed with a semiempirical model based on the air kerma and HVL measured with an ionization chamber. The results point out that the scatter fraction values are higher for W/Rh than for Mo/Mo and Mo/Rh, although the primary and scattered air kerma are lower for W/Rh than for Mo/Mo and Mo/Rh target/filter combinations. The scatter fractions computed in this work were applied in a shielding design calculation in order to evaluate shielding requirements for each of these target/filter combinations. Besides, shielding requirements have been evaluated converting the scattered air kerma from mGy/week to mSv/week adopting initially a conversion coefficient from air kerma to effective dose as 1 Sv/Gy and then a mean conversion coefficient specific for the x-ray beam considered. Results show that the thickest barrier should be provided for Mo/Mo target/filter combination. They also point out that the use of the conversion coefficient from air kerma to effective dose as 1 Sv/Gy is conservatively high in the mammography energy range and overestimate the barrier thickness. (c) 2008 American Association of Physicists in Medicine.
Resumo:
The temperature dependence of the crystalline structure and the lattice parameters of Pb1-xLaxZr0.40Ti0.60O3 ferroelectric ceramic system with 0.00 x 0.21 was determined. The samples with x 0.11 show a cubic-to-tetragonal phase transition at the maximum dielectric permittivity, Tmax. Above this amount and especially for the x = 0.12 sample, a spontaneous phase transition from a relaxor ferroelectric state (cubic phase) to a ferroelectric state (tetragonal phase) is observed upon cooling below the Tmax. Unlike what has been reported in other studies, the x = 0.13, 0.14, and 0.15 samples, which present a more pronounced relaxor behavior, also presents a spontaneous normal-to-relaxor transition, indicated by a cubic to tetragonal symmetry below the Tmax. The origin of this anomaly has been associated with an increase in the degree of tetragonality, confirmed by the measurements of the X-ray diffraction patterns. The differential thermal analysis (DSC) measurements also confirm the existence of these phase transitions.