999 resultados para Time Minimizers
Resumo:
Single molecule force clamp experiments are widely used to investigate how enzymes, molecular motors, and other molecular mechanisms work. We developed a dual-trap optical tweezers instrument with real-time (200 kHz update rate) force clamp control that can exert 0–100 pN forces on trapped beads. A model for force clamp experiments in the dumbbell-geometry is presented. We observe good agreement between predicted and observed power spectra of bead position and force fluctuations. The model can be used to predict and optimize the dynamics of real-time force clamp optical tweezers instruments. The results from a proof-of-principle experiment in which lambda exonuclease converts a double-stranded DNA tether, held at constant tension, into its single-stranded form, show that the developed instrument is suitable for experiments in single molecule biology.
Resumo:
The paper describes the sensitivity of the simulated precipitation to changes in convective relaxation time scale (TAU) of Zhang and McFarlane (ZM) cumulus parameterization, in NCAR-Community Atmosphere Model version 3 (CAM3). In the default configuration of the model, the prescribed value of TAU, a characteristic time scale with which convective available potential energy (CAPE) is removed at an exponential rate by convection, is assumed to be 1 h. However, some recent observational findings suggest that, it is larger by around one order of magnitude. In order to explore the sensitivity of the model simulation to TAU, two model frameworks have been used, namely, aqua-planet and actual-planet configurations. Numerical integrations have been carried out by using different values of TAU, and its effect on simulated precipitation has been analyzed. The aqua-planet simulations reveal that when TAU increases, rate of deep convective precipitation (DCP) decreases and this leads to an accumulation of convective instability in the atmosphere. Consequently, the moisture content in the lower-and mid-troposphere increases. On the other hand, the shallow convective precipitation (SCP) and large-scale precipitation (LSP) intensify, predominantly the SCP, and thus capping the accumulation of convective instability in the atmosphere. The total precipitation (TP) remains approximately constant, but the proportion of the three components changes significantly, which in turn alters the vertical distribution of total precipitation production. The vertical structure of moist heating changes from a vertically extended profile to a bottom heavy profile, with the increase of TAU. Altitude of the maximum vertical velocity shifts from upper troposphere to lower troposphere. Similar response was seen in the actual-planet simulations. With an increase in TAU from 1 h to 8 h, there was a significant improvement in the simulation of the seasonal mean precipitation. The fraction of deep convective precipitation was in much better agreement with satellite observations.
Resumo:
Physical inactivity has become a major threat to public health worldwide. The Finnish health and welfare policies emphasize that the working population should maintain good health and functioning until their normal retirement age and remain in good health and independence later in life. Health behaviours like physical activity potentially play an important role in reaching this target as physical activity contributes to better physical fitness and to reduced risk of major chronic diseases. The aim of this study was to examine first whether the volume and intensity of leisure-time physical activity impacts on subsequent physical health functioning, sickness absence and disability retirement. The second aim was to examine changes in leisure-time physical activity of moderate and vigorous intensity after transition to retirement. This study is part of the ongoing Helsinki Health Study. The baseline data were collected by questionnaires in 2000 - 02 among the employees of the City of Helsinki aged 40 to 60. The follow-up survey data were collected in 2007. Data on sickness absence were obtained from the employer s (City of Helsinki) sickness absence registers and pension data were obtained from the Finnish Centre for Pensions. Leisure-time physical activity was measured in four grades of intensity and classified according to physical activity recommendations considering both the volume and intensity of physical activity. Statistical techniques including analysis of covariance, logistic regression, Cox proportional hazards models and Poisson regression were used. Employees who were vigorously active during leisure time especially had better physical health functioning than those physically inactive. High physical activity in particular contributed to the maintenance of good physical health functioning. High physical activity also reduced the risk of subsequent sickness absences as well as the risk of all-cause disability retirement and retirement due to musculoskeletal and mental causes. Among those transferred to old-age retirement moderate-intensity leisure-time physical activity increased on average by more than half an hour per week and in addition the occurrence of physical inactivity reduced. Such changes were not observed among those remained employed and those transferred to disability retirement. This prospective cohort study provided novel results on the effects of leisure-time physical activity on health related functioning and changes in leisure-time physical activity after retirement. Although the benefits of moderate-intensity physical activity for health are well known these results suggest the importance of vigorous physical activity for subsequent health related functioning. Thus vigorous physical activity to enhance fitness should be given more emphasis from a public health perspective. In addition, physical activity should be encouraged among those who are about to retire.
Resumo:
In this paper time-resolved resonance Raman (TR3) spectra of intermediates generated by proton induced electron-transfer reaction between triplet 2-methoxynaphthalene ((ROMe)-R-3) and decafluorobenzophenone (DFBP) are presented The TR3 vibrational spectra and structure of 2-methoxynaphthalene cation radical (ROMe+) have been analyzed by density functional theory (DFT) calculation It is observed that the structure of naphthalene ring of ROMe+ deviates from the structure of cation radical of naphthalene
Resumo:
Time-dependent models of collisionless stellar systems with harmonic potentials allowing for an essentially exact analytic description have recently been described. These include oscillating spheres and spheroids. This paper extends the analysis to time-dependent elliptic discs. Although restricted to two space dimensions, the systems are richer in that their parameters form a 10-dimensional phase space (in contrast to six for the earlier models). Apart from total energy and angular momentum, two additional conserved quantities emerge naturally. These can be chosen as the areas of extremal sections of the ellipsoidal region of phase space occupied by the system (their product gives the conserved volume). The present paper describes the construction of these models. An application to a tidal encounter is given which allows one to go beyond the impulse approximation and demonstrates the effects of rotation of the perturbed system on energy and angular-momentum transfer. The angular-momentum transfer is shown to scale inversely as the cube of the encounter velocity for an initial configuration of the perturbed galaxy with zero quadrupole moment.
Resumo:
A real-time operational methodology has been developed for multipurpose reservoir operation for irrigation and hydropower generation with application to the Bhadra reservoir system in the state of Karnataka, India. The methodology consists of three phases of computer modelling. In the first phase, the optimal release policy for a given initial storage and inflow is determined using a stochastic dynamic programming (SDP) model. Streamflow forecasting using an adaptive AutoRegressive Integrated Moving Average (ARIMA) model constitutes the second phase. A real-time simulation model is developed in the third phase using the forecast inflows of phase 2 and the operating policy of phase 1. A comparison of the optimal monthly real-time operation with the historical operation demonstrates the relevance, applicability and the relative advantage of the proposed methodology.
Resumo:
Drug-drug interactions may cause serious, even fatal clinical consequences. Therefore, it is important to examine the interaction potential of new chemical entities early in drug development. Mechanism-based inhibition is a pharmacokinetic interaction type, which causes irreversible loss of enzyme activity and can therefore lead to unusually profound and long-lasting consequences. The in vitro in vivo extrapolation (IVIVE) of drug-drug interactions caused by mechanism-based inhibition is challenging. Consequently, many of these interactions have remained unrecognised for many years. The concomitant use of the fibrate-class lipid-lowering agent gemfibrozil increases the concentrations of some drugs and their effects markedly. Even fatal cases of rhabdomyolysis occurred in patients administering gemfibrozil and cerivastatin concomitantly. One of the main mechanisms behind this effect is the mechanism-based inhibition of the cytochrome P450 (CYP) 2C8 enzyme by a glucuronide metabolite of gemfibrozil leading to increased cerivastatin concentrations. Although the clinical use of gemfibrozil has clearly decreased during recent years, gemfibrozil is still needed in some special cases. To enable safe use of gemfibrozil concomitantly with other drugs, information concerning the time and dose relationships of CYP2C8 inhibition by gemfibrozil should be known. This work was carried out as four in vivo clinical drug-drug interaction studies to examine the time and dose relationships of the mechanism-based inhibitory effect of gemfibrozil on CYP2C8. The oral antidiabetic drug repaglinide was used as a probe drug for measuring CYP2C8 activity in healthy volunteers. In this work, mechanism-based inhibition of the CYP2C8 enzyme by gemfibrozil was found to occur rapidly in humans. The inhibitory effect developed to its maximum already when repaglinide was given 1-3 h after gemfibrozil intake. In addition, the inhibition was shown to abate slowly. A full recovery of CYP2C8 activity, as measured by repaglinide metabolism, was achieved 96 h after cessation of gemfibrozil treatment. The dose-dependency of the mechanism-based inhibition of CYP2C8 by gemfibrozil was shown for the first time in this work. CYP2C8 activity was halved by a single 30 mg dose of gemfibrozil or by twice daily administration of less than 30 mg of gemfibrozil. Furthermore, CYP2C8 activity was decreased over 90% by a single dose of 900 mg gemfibrozil or twice daily dosing of approximately 100 mg gemfibrozil. In addition, with the application of physiological models to the data obtained in the dose-dependency studies, the major role of mechanism-based inhibition of CYP2C8 in the interaction between gemfibrozil and repaglinide was confirmed. The results of this work enhance the proper use of gemfibrozil and the safety of patients. The information related to time-dependency of CYP2C8 inhibition by gemfibrozil may also give new insights in order to improve the IVIVE of the drug-drug interactions of new chemical entities. The information obtained by this work may be utilised also in the design of clinical drug-drug interaction studies in the future.
Resumo:
This work is a survey of the average cost control problem for discrete-time Markov processes. The authors have attempted to put together a comprehensive account of the considerable research on this problem over the past three decades. The exposition ranges from finite to Borel state and action spaces and includes a variety of methodologies to find and characterize optimal policies. The authors have included a brief historical perspective of the research efforts in this area and have compiled a substantial yet not exhaustive bibliography. The authors have also identified several important questions that are still open to investigation.
Resumo:
84 s.
Resumo:
We consider the problem of minimizing the total completion time on a single batch processing machine. The set of jobs to be scheduled can be partitioned into a number of families, where all jobs in the same family have the same processing time. The machine can process at most B jobs simultaneously as a batch, and the processing time of a batch is equal to the processing time of the longest job in the batch. We analyze that properties of an optimal schedule and develop a dynamic programming algorithm of polynomial time complexity when the number of job families is fixed. The research is motivated by the problem of scheduling burn-in ovens in the semiconductor industry
Resumo:
We study the problem of minimizing total completion time on single and parallel batch processing machines. A batch processing machine is one which can process up to B jobs simultaneously. The processing time of a batch is equal to the largest processing time among all jobs in the batch. This problem is motivated by burn-in operations in the final testing stage of semiconductor manufacturing and is expected to occur in other production environments. We provide an exact solution procedure for the single-machine problem and heuristic algorithms for both single and parallel machine problems. While the exact algorithms have limited applicability due to high computational requirements, extensive experiments show that the heuristics are capable of consistently obtaining near-optimal solutions in very reasonable CPU times.
Resumo:
Inspite of numerous research advancements made in recent years in the area of formal techniques, specification of real-time systems is still proving to be a very challenging and difficult problem. In this context, this paper critically examines state-of-the-art specification techniques for real-time systems and analyzes the emerging trends.
Evolution in the time series of vortex velocity fluctuations across different regimes of vortex flow
Resumo:
Investigations of vortex velocity fluctuation in time domain have revealed a presence of low frequency velocity fluctuations which evolve with the different driven phases of the vortex state in a single crystal of 2H-NbSe2. The observation of velocity fluctuations with a characteristic low frequency is associated with the onset of nonlinear nature of vortex flow deep in the driven elastic vortex state. (C) 2009 Elsevier B.V. All rights reserved.